# A Review on the Use of Sodium Triacetoxyborohydride in the Reductive Amination of Ketones and Aldehydes

Ahmed F. Abdel-Magid\* and Steven J. Mehrman

Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Department of Chemical Development, Spring House, Pennsylvania 19477, U.S.A.

#### Introduction

Amines occupy a very special place in organic chemistry. They exist in many natural biologically important molecules such as amino acids, nucleic acids, alkaloids, and many others. They are also common features in many of the synthetic compounds used as medicines and commercial drugs. Amines are used as bases in many synthetic transformations, serve as key intermediates in organic synthesis, and are important building blocks in many of the common polymers such as nylons. Due to their importance, there are numerous methods for the preparation of amines. Some of the general methods include the reduction of nitrogencontaining functional groups such as nitro, cyano, azide, and carboxamide derivatives. Another general method is the alkylation of ammonia, primary amines, or secondary amines. Alkyl halides or sulfonates may be used as alkylating agents in these reactions; however, overalkylation of ammonia and primary amines is a common side reaction. A superior method of alkylating ammonia and amines is the reaction of aldehydes or ketones with ammonia, primary amines, or secondary amines in the presence of reducing agents to give primary, secondary, or tertiary amines, respectively. The reaction is referred to as either reductive alkylation (of amines) or reductive amination (of carbonyl compounds). In this review we use the term reductive amination in reference to this reaction. The reductive amination of aldehydes and ketones is a cornerstone reaction and is one of the most useful and important tools in the synthesis of different kinds of amines. Generally, the reaction proceeds via the initial formation of an intermediate carbinolamine 3 (Scheme 1), which dehydrates to form an imine (Schiff base) or iminium ion 4.1,2 Reduction of 4 produces the amine product 5. Some reports provided evidence suggesting a direct reduction of the carbinolamine 3 as a possible pathway leading to  $5.^3$ 

We describe the reductive amination reaction as *direct* when the carbonyl compound and the amine are mixed with the proper reducing agent without prior formation of the intermediate imine or iminium salt. In this case, the choice of reducing agent is very critical to the success of the reaction. The reducing agent must reduce imines (or iminium ions) selectively over aldehydes and ketones under the same

reaction conditions. *Indirect* or *stepwise* reductive amination reactions involve the preformation of intermediate imines (from ammonia or a primary amine and an aldehyde or a ketone) or sometimes enamine or iminum species (from secondary amines and aldehydes or ketones) followed by reduction in a separate step. The choice of reducing agent is not as critical as in the direct reactions since there will be no competition or interference from a carbonyl compound. Several reducing agents, including strong and nonselective ones, may be used based on the structure.

The direct reductive amination is most convenient, and it is usually the method of choice. The two most commonly used direct reductive amination methods differ in the nature of the reducing agent. The first and older method is catalytic hydrogenation.<sup>1,4,5</sup> The success of this procedure requires the reduction of the carbonyl compound to be relatively slow. Catalytic hydrogenation is economical, convenient, and a very effective reductive amination method, particularly in large-scale reactions. On the other hand, in many cases, the reaction may give a mixture of products and low yields depending on the molar ratios and the structure of the reactants.6 It has seen limited use with compounds containing carbon-carbon (and other) multiple bonds and in the presence of reducible functional groups such as nitro<sup>7,8</sup> and cyano<sup>8</sup> groups. Another limitation is associated with compounds containing divalent sulfur that may inhibit and deactivate the catalyst.<sup>8</sup> The second method utilizes hydride reducing agents. The use of hydride reagents in reduction of Schiff bases appeared in scattered reports in the 1950s.<sup>9–11</sup> The first study of a direct reductive amination procedure using a hydride reagent was reported by Schellenberg in 1963, in which he used sodium borohydride (NaBH<sub>4</sub>) as the reducing agent.<sup>2</sup> The reactions were carried out by mixing amine salts and carbonyl compounds in buffered aqueous solutions at 0 °C followed by addition of NaBH<sub>4</sub>. In spite of the fast rate of ketone and aldehyde reduction with NaBH<sub>4</sub>, the reductive amination occurred rapidly "even in some instances where the equilibrium for the formation of the Schiff base is too unfavorable to permit its ready isolation." Yields of 50% (acetone + lysine), 63% (isobutylamine +

(11) Billman, J. H.; Tai, K. M. J. Org. Chem. 1958, 23 (4), 535.

<sup>\*</sup> To whom correspondence should be addressed. E-mail: afmagid@prdus.jnj.com.

<sup>(1)</sup> Emerson, W. S. Org. React. 1948, 4, 174.

<sup>(2)</sup> Schellenberg, K. A. J. Org. Chem. 1963, 28 (11), 3259.

<sup>(3)</sup> Tadanier, J.; Hallas, R.; Martin, J. R.; Stanaszek, R. S. *Tetrahedron* 1981, 37 (7), 1309.

<sup>(4)</sup> Emerson, W. S.; Uraneck, C. A. J. Am. Chem. Soc. 1941, 63 (3), 749.

<sup>(5)</sup> Klyuev, M. V.; Khidekel, M. L. Russ. Chem. Rev. 1980, 49 (1), 14.

<sup>(6)</sup> Skita, A.; Keil, F. Chem. Ber. 1928, (61B), 1452.

<sup>(7)</sup> Roe, A.; Montgomery, J. A. J. Am. Chem. Soc. 1953, 75 (4), 910.

 <sup>(8)</sup> Rylander, P. N. Catalytic Hydrogenation over Platinum Metals; Academic Press: New York, 1967; p 21.

<sup>(9)</sup> Billman, J. H.; McDowell, J. W. J. Org. Chem. 1961, 26 (5), 1437.

<sup>(10)</sup> Billman, J. H.; McDowell, J. W. J. Org. Chem. 1962, 27 (7), 2640.

#### Scheme 1. General reductive amination pathway





acetone), 91% (isobutyraldehyde + aniline), and 83% (benzaldehvde + aniline) were reported. The study also reported failed reactions with acetophenone and benzophenone and failed reactions between piperidine and ketones although a successful reaction between piperidine and acetaldehyde. This study was significant and opened new possibilities for reductive amination reactions. The major limitations of this procedure were originated from the use of NaBH<sub>4</sub>, a nonselective reducing agent. In 1971 Borch<sup>12</sup> reported the first practical hydride procedure for direct reductive amination in which he used the more selective sodium cyanoborohydride (NaBH<sub>3</sub>CN) as the reducing agent.13 The successful use of NaBH<sub>3</sub>CN is due to its different selectivities at different pH values<sup>12</sup> and its stability in relatively strong acid solutions (~pH 3) as well as its good solubility in hydroxylic solvents such as methanol. At pH 3-4 it reduces aldehydes and ketones effectively.<sup>14</sup> At pH 6-8, imines are preferentially protonated and reduced faster than aldehydes or ketones.<sup>12</sup> Therefore, by carrying out the reductive amination reaction under neutral to weakly acidic conditions, the reactants have the chance to form imines or iminium ions without consumption of aldehydes or ketones via reduction. This selectivity permits a very convenient and high yielding direct reductive amination procedure. The literature is replete with publications that document the very successful use of sodium cyanoborohydride in a wide scope of applications in reductive amination reactions.<sup>15,16</sup> Some reported limitations are the requirement of a large excess of the amine,<sup>12</sup> the sluggish reactions with aromatic ketones<sup>12</sup> and with weakly basic amines,17-20 and the possibility of contamination of the product with cyanide.<sup>21</sup> The reagent is also highly toxic<sup>22</sup> and produces toxic byproducts such as HCN and NaCN upon workup.

Following the introduction of sodium cyanoborohydride for reductive amination reactions, some modifications and other reductive amination procedures were introduced in the 1980s and early 1990s but had much limited applications. Examples include borane–pyridine,<sup>20</sup> Ti(OiPr)<sub>4</sub>/NaBH<sub>3</sub>CN,<sup>19</sup> borohydride exchange resin,<sup>23</sup> Zn/AcOH,<sup>24</sup> NaBH<sub>4</sub>/Mg-(ClO<sub>4</sub>)<sub>2</sub>,<sup>25</sup> Zn(BH<sub>4</sub>)<sub>2</sub>/ZnCl<sub>2</sub>,<sup>26</sup> electrochemical reductive amination,<sup>27–29</sup> and many others.

The next major advancement came in 1989 when we introduced a new procedure for reductive amination of aldehydes and ketones using sodium triacetoxyborohydride

- (12) Borch, R. F.; Bernstein, M. D.; Durst, H. D. J. Am. Chem. Soc. 1971, 93 (12), 2897.
- (13) Hutchins, R. O.; Hutchins, M. K., Reduction of C=N to CHNH by Metal Hydrides. In *Comprehensive Organic Synthesis*; Trost, B. N., Fleming, I., Eds.; Pergamon Press: New York, 1991; Vol. 8.
- (14) Borch, R. F.; Durst, H. D. J. Am. Chem. Soc. 1969, 91 (14), 3996.
- (15) Hutchins, R. O.; Natale, N. R. Org. Prep. Proced. Int. 1979, 11 (5), 201.
- (16) Lane, C. F. Synthesis 1975, (3), 135.
- (17) Borch, R. F.; Hassid, A. I. J. Org. Chem. 1972, 37 (10), 1673.
- (18) Marchini, P.; Liso, G.; Reho, A.; Liberatore, F.; Moracci, F. M. J. Org. Chem. 1975, 40 (23), 3453.
- (19) Mattson, R. J.; Pham, K. M.; Leuck, D. J.; Cowen, K. A. J. Org. Chem. 1990, 55 (8), 2552.
- (20) Pelter, A.; Rosser, R. M.; Mills, S. J. Chem. Soc., Perkin Trans. 1 1984, 4, 717.
- (21) Moormann, A. E. Synth. Commun. 1993, 23 (6), 789.
- (22) Sigma-Aldrich Library of Chemical Safey Data, 1st ed.; Lenga, R. E., Ed.; Sigma-Aldrich Corp.: Milwaukee, WI, 1985; p 1609.
- (23) Yoon, N. M.; Kim, E. G.; Son, H. S.; Choi, J. Synth. Commun. 1993, 23 (11), 1595.
- (24) Micovic, I. V.; Ivanovic, M. D.; Piatak, D. M.; Bojic, V. D. Synthesis 1991, (11), 1043.
- (25) Brussee, J.; van Benthem, R. A. T. M.; Kruse, C. G.; van der Gen, A. Tetrahedron: Asymmetry 1990, 1 (3), 163.
- (26) Bhattacharyya, S.; Chatterjee, A.; Duttachowdhhury, S. K. J. Chem. Soc., Perkin Trans. 1 1994, (1), 1.
- (27) Pienemann, T.; Schäfer, H.-J. Synthesis 1987, 1005.
- (28) Smirnov, Y. D.; Pavlichenko, V. F.; Tomilov, A. P. Russ. J. Org. Chem. 1992, 28 (3), 374.
- (29) Smirnov, Y. D.; Tomilov, A. P. Russ. J. Org. Chem. 1992, 28 (1), 42.

as reducing agent<sup>30</sup> that has become one of the most used in carrying out reductive amination reactions with a large number of applications and literature reports. It is noteworthy to mention that the procedure was conceived from one of our process chemistry projects in early 1988, during the development of a large-scale synthesis of amine 7 (Scheme 2), a key precursor in the synthesis of a drug candidate. The synthesis included the formation of imine 6 from ketone 8 and amine 9 followed by reduction with sodium cyanoborohydride.<sup>31</sup> While the reduction was successful, the isolated product was always contaminated with cyanide and could not be purified by simple means. As a result, we sought an alternative to sodium cyanoborohydride to eliminate the risk of residual cyanide, not only in the product but also in the workup waste stream, which is an environmental concern. Because of the presence of the alkyne functionality, the use of catalytic hydrogenation methods was not an option. Our efforts to solve the problem resulted in the identification of sodium triacetoxyborohydride [NaBH(OAc)<sub>3</sub>] abbreviated here as STAB-H<sup>32-34</sup> as a superior, convenient, and effective reducing agent for reductive amination reactions. Thus, the direct reductive amination of the ketone 8 with the amine 9 in the presence of sodium triacetoxyborohydride in 1,2dichloroethane or THF gave nearly quantitative yield of product 7 in high purity. This eliminated the separate step of forming the imine and solved the problem of contamination with cyanide. Our selection of sodium triacetoxyborohydride was based on the studies of Gribble on reductive alkylation of amines using sodium borohydride in neat liquid carboxylic acids.35,36

Following this remarkable result, we initiated a comprehensive study on the scope and limitations of this reagent in the *direct* reductive amination of aldehydes and ketones with ammonia, primary amines, and secondary amines. Comparative studies on the use of sodium triacetoxyborohydride versus other literature methods clearly showed it to be the reagent of choice in most cases.<sup>37</sup> The reactions are convenient, easy to conduct, and easy to work up, and the isolated yields are usually good to excellent. In our study, most products were isolated by simple extraction and salt formation without the need for chromatographic purification. Since the introduction of this procedure, it has been applied to the synthesis of a large number of amine substrates and continues to be an outstanding reagent for reductive amination reactions. In this review, we provide an outline and an update

- (30) Abdel-Magid, A. F.; Maryanoff, C. A.; Sorgi, K. L.; Carson, K. G. Presented at the 198th ACS National Meeting, Miami Beach, FL, September 1989; Abstract ORGN 154.
- (31) Carson, J. R.; Almond, H. R.; Brannan, M. D.; Carmosin, R. J.; Flaim, S. F.; Gill, A.; Gleason, M. M.; Keely, S. L.; Ludovici, D. W.; Pitis, P. M.; Rebarchak, M. C.; Villani, F. J. *J. Med. Chem.* **1988**, *31* (3), 630.
- (32) Gribble, G. W.; Ferguson, D. C. J. Chem. Soc., Chem. Commun. 1975, 535.
- (33) Nutaitis, C. F.; Gribble, G. W. Tetrahedron Lett. 1983, 24 (40), 4287.
- (34) Gribble, G. W. In *Encylopedia of Reagents for Organic Synthesis*; Paquette, L. A., Ed.; John Wiley and Sons: New York, 1995; Vol. 7, p 4649. See also: Gribble, G. W. *Chem. Soc. Rev.* **1998**, 27 (6), 395.
- (35) Gribble, B. W.; Lord, P. D.; Skotnicki, J.; Dietz, S. E.; Eaton, J. T.; Johnson, J. L. J. Am. Chem. Soc. 1974, 96 (25), 7812.
- (36) Gribble, G. W.; Jasinski, J. M.; Pellicone, J. T.; Panetta, J. A. Synthesis 1978, 766.
- (37) Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. D. J. Org. Chem. 1996, 61 (11), 3849.

of the utility of sodium triacetoxyborohydride as a reducing agent in reductive amination reactions with an emphasis on the scope. The majority of the reactions compiled in this review were carried out on a small scale of milligrams to a few grams. Our purpose is to emphasize the scope of the reaction; therefore while we list most of the known reactions, we highlight and comment mostly on reactions that were carried out on a large scale or provide a unique application or both.

#### Discussion

1. Reaction Conditions. 1.a: The Reagent: STAB-H. Sodium triacetoxyborohydride (STAB-H) is a mild reagent that exhibits remarkable selectivity as a reducing agent. It reduces aldehydes but not ketones; 32-34 however,  $\beta$ -hydroxyketones can be reduced selectively to give 1,3-trans diols.<sup>38–40</sup> The steric and the electron-withdrawing effects of the three acetoxy groups stabilize the boron-hydrogen bond and are responsible for its mild reducing properties.<sup>41</sup> It is commercially available as a hygroscopic white powder with a melting point of 116-120 °C.<sup>34</sup> It is also easily prepared by the reaction of NaBH<sub>4</sub> with excess acetic acid in benzene or toluene.<sup>39</sup> In large-scale reactions, it may be economical to prepare the reagent in the appropriate solvent rather than using the commercial product. However this introduces a safety concern because of the exothermic nature of the reaction and the hydrogen evolution. A recent report<sup>42</sup> identified and discussed the possible thermal and chemical hazards associated with the preparation of STAB-H. The reference concluded that the use of solid NaBH<sub>4</sub> causes many of the hazards because of the accumulation of the solid and the late initiation that may result in a sudden increase in temperature, hydrogen evolution, and decomposition of product. The report described a modified safer procedure for the in situ production of STAB-H by the reaction of a solution of NaBH<sub>4</sub> in N,N-dimethylacetamide (DMAC) with glacial acetic acid that minimized the hazards of using solid NaBH<sub>4</sub>.

**1.b:** Solvents. In our initial evaluation, 1,2-dichloroethane emerged as the better choice for a reaction solvent based on isolated yields and reaction times.<sup>37</sup> However, other solvents such as THF, acetonitrile, and DMF were also used with successful results. In general many polar aprotic solvents were suitable solvents for this reaction. We avoided the use of dichloromethane despite its suitablity as a solvent, due to its tendency to react with amines.<sup>43</sup> It is also undesirable in large-scale reactions because of its toxicity and volatility which increase the chance of exposure. Water reacts with sodium triacetoxyborohydride, and it was avoided as a solvent or cosolvent. However, water may be present in small

- (38) Evans, D. A.; Chapman, K. T. Tetrahedron Lett. 1986, 27 (49), 5939.
- (39) Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. 1988, 110, 3560.
- (40) Saksena, A. K.; Mangiaracina, P. Tetrahedron Lett. 1983, 24 (3), 273.
- (41) Gribble, G. W.; Nutaitis, C. F. Org. Prep. Proced. Int. 1985, 17 (4-5), 317.
- (42) Lam, T. T.; Bagner, C.; Tuma, L. Thermochim. Acta 2005, 426, (1-2), 109.
- (43) Mills, J. E.; Maryanoff, C. A.; McComsey, D. F.; Stanzione, R. C.; Scott, L. J. Org. Chem. 1987, 52 (9), 1857.

quantities without affecting the outcome of the reaction. In cases where one of the reagents contains water as in formalin and glyoxaldehyde, additional amounts of triacetoxyborohydride are used to compensate for decomposed hydride reagent. Reactions in methanol were not consistent, and in many cases, particularly with aldehydes, reduction of the carbonyl compound was competitive with reductive amination. Several groups have used methanol successfully as solvent in reductive amination reactions.<sup>44–46</sup> Higher alcohols such as ethanol and isopropanol react slower with NaBH(OAc)<sub>3</sub> than water and methanol and may be used as solvents. Another solvent that may be useful in reductive amination with STAB-H is N,N-dimethylacetamide (DMAC). It was successfully used in the synthesis of a substance P agonist via reductive amination (see Table 5, entry 25).47

**1.c:** Stoichiometry. In most reactions, the carbonyl compound is the limiting reagent and the amine is used in slight excess (1.05-1.1 equiv). Small amines, volatile amines, or easy to remove amines may be used in larger excess as needed. Larger nonvolatile or expensive amines are used in stoichiometric amounts. In many slow reductive amination reactions such as reactions of aldehydes and ketones with weakly basic amines, the amine is used as the limiting reagent. Sodium triacetoxyborohydride is commonly used in excess ranging from 1.4 to 4 or more equivalents. In most cases the entire amount of triacetoxyborohydride is added in one portion, but in some others, particularly on larger scale, it is added in small portions and/or with cooling to avoid sudden increases in the reaction temperature.

1.d: Effect of Acids. In general, addition of 1 equiv of a weak acid or using amine salts of weak acids increases the rate of reductive amination. Acetic acid is commonly used as the weak acid additive. Addition of strong acids or using their amine salts may completely stop the reaction. When using amine hydrochlorides, for example, an equivalent amount of a tertiary amine such as triethylamine is added to free the reactant amine. Most ketone reactions require the addition of 1 equiv of acetic acid to speed up the reaction. In many slow reactions (>24 h), we observed the formation of N-acetyl and N-ethyl derivatives of the starting and/or product amines (up to 5% by GC analysis) as side products. Many of these reactions may be suppressed by using trifluoroacetic acid in place of acetic acid. Most aldehyde reactions do not require activation with acids and are better carried out without addition of acids to eliminate (or minimize) any chance of aldehyde reduction.

**1.e: Reaction Temperature.** The majority of reactions are carried out at room temperature (20-25 °C). Addition of the hydride reagent may be exothermic in some cases; the temperature may rise by 5-10 °C. While that is not a

concern in small reactions, during large-scale reactions, it may be a safety concern, and therefore cooling the reaction or addition of the hydride reagent in portions may be necessary to control the reaction temperature. Nearly all the reactions we studied were carried out at room temperature. In the case of reductive amination of *N*- $\epsilon$ -Cbz-L-lysine with benzaldehyde using NaBH(OAc)<sub>3</sub> in DCE, we did not obtain any significant reaction at room temperature, probably because of the low solubility of the amino acid. Heating the reaction to 50 °C gave the desired product in 82% isolated yield.<sup>48</sup>

**1.f: Isolation.** The most common method of isolating amine products is extraction after basification with aqueous 1 N NaOH. Basification of products containing esters or other base sensitive groups is done with aqueous solutions of Na<sub>2</sub>-CO<sub>3</sub> or NaHCO<sub>3</sub>. Some highly basic amines such as benzylamines may dissolve in aqueous solutions of carbonate and bicarbonate and may be lost in extractions. In most reactions, the isolated crude product is purified by crystallization of their salts, such as hydrochloride salts (usually from EtOAc/MeOH) or oxalate salts (usually from MeOH). Other salts or solid free amines may also be purified by crystallization. Few cases require chromatographic purifications.

**1.g: Standard Conditions.** Based on the aforementioned observations, the following standard conditions are recommended for the reductive aminations:

For Ketones. Ketone (1 equiv), amine (1.05-1.1 equiv), AcOH (1 equiv), and NaBH(OAc)<sub>3</sub> (1.4 equiv) in DCE or THF as solvent at rt.

For Aldehydes. Aldehyde (1 equiv), amine (1.05-1.1 equiv), and NaBH(OAc)<sub>3</sub> (1.4 equiv) in DCE or THF as solvent at rt.

These conditions may be modified to optimize the yield of a particular compound or a class of compounds, for example, using the amines as limiting reagents; using a larger excess of NaBH(OAc)<sub>3</sub>; using other solvents such as CH<sub>3</sub>-CN, DMF, or *i*-PrOH; and conducting the reaction at higher or lower temperatures.

**2. Reductive Amination of Ketones:** With a few exceptions,<sup>38–40</sup> sodium triacetoxyborohydride does not reduce ketones.<sup>32,33</sup> It is however capable of reducing ketimines under neutral to weakly acidic conditions. That made it ideal for reductive amination of ketones. Ketones would react with amines to form imines or iminium ions without interference from the reducing agent. Our systematic study<sup>37</sup> and the vast literature that followed clearly showed the utility and the wide scope of this reagent in reductive amination of different kinds of ketones with some few limitations.

In general, the scope of the reactions includes most alicyclic and heterocyclic ketones, bicyclic ketones, and saturated acyclic ketones. Limitations include most aromatic ketones,  $\alpha$ , $\beta$ -unsaturated ketones, and sterically hindered aliphatic ketones.

**2.a:** Alicyclic, Heterocyclic, and Bicyclic Ketones. Saturated cycloalkanones and hetercycloalkanones ranging

<sup>(44)</sup> Mammen, M.; Wilson, R.; Chen, Y.; Dunham, S.; Hughes, A.; Husfeld, C.; Ji, Y.-H.; Li, L.; Mischki, T.; Stergiades, I. WO Patent Application 04/041806A2, 2004.

<sup>(45)</sup> Pennington, M. W.; Scopes, D. I.; Orchard, M. G. U.S. Patent 02/ 6335446B1, 2002.

<sup>(46)</sup> Mattson, R. J.; Denhart, D.; Deskus, J.; Ditta, J.; Marcin, L.; Epperson, J.; Catt, J.; King, D.; Higgins, M. WO Patent Application 02/079152A1, 2002.

 <sup>(47)</sup> Journet, M.; Cai, D.; Hughes, D. L.; Kowal, J. J.; Larsen, R. D.; Reider, P. J. Org. Process Res. Dev. 2005, 9 (4), 490.

<sup>(48)</sup> Abdel-Magid, A. F. Unpublished results

in size from 4- to 12-membered rings give excellent yields in reductive amination reactions with primary and secondary amines. Small ring ketones are usually more reactive than the larger ones, and all react efficiently under the standard conditions. Six-membered ring ketones are the most common amongst the reported reductive amination reactions with cyclic ketones. Table 1 features several examples of amines obtained from reductive amination of this class of ketones. Entries 1-3 represent reactions with cyclobutanones, entries 4-12 are representative reactions of cyclopentanones, entries 13-46 represent six-membered ring ketones, and entries 47-49 are examples of larger ring ketones. While most of the literature reactions are carried out on a small scale, the structural diversity of the molecules used in these examples should be helpful in determining the scope of this procedure. The conditions are very tolerant to the presence of many functional groups, and the conditions vary to a large degree based on the solubility and reactivity of the individual ketones and amines.

The reactivity of cyclobutanone compares to that of aldehydes; for example, reductive amination of cyclobutanone with benzylamine gave a mixture of *N*-cyclobutyl and *N*,*N*-dicyclobutyl benzylamines even when using excess benzylamine. The only homogeneous reactions were achieved when using excess ketone to form *N*,*N*-dicyclobutyl benzylamine (Table 1, entry 1) or in reactions with secondary amines when only one product is possible (Table 1, entry 2).

Most other cyclic ketones react slower, and the dialkylation of primary amines is not a common occurrence. Reactions with cyclopentanones and cyclohexanones are usually complete in a few hours to 24 h. However, we noticed very fast reactions with 4-*tert*-butylcyclohexanone and other 4-substituted cyclohexanones such as cyclohexane-1,4-dione monoethylene ketal (see Tables 2 and 10). Some reactions are complete in only 10 min. The structural diversity and complexity of the substrates are illustrated in the listed examples.

**2.b:** Diastereoselection in Reductive Amination of Cyclic and Bicyclic Ketones. In substituted cyclic and bicyclic ketones, the formation of diastereomers is possible; in these cases we observe variable degrees of diastereose-lectivity based on the location and the size of the substituent or other steric factors.<sup>37,75–78</sup> The examples listed in Table 2

- (49) Yang, L.; Lin, S.; Moriello, G.; Gui, L.; Zhou, C. WO Patent Application 06/001958A2, 2006.
- (50) Ge, M.; Goble, S. D.; Pasternak, A.; Yang, L. WO Patent Application 05/ 010154A2, 2005.
- (51) Curtis, N. R.; Hunt, P. A.; Kulagowski, J. J. U.S. Patent Application 05/ 0080077A1, 2005.
- (52) Sterling, J.; Sklarz, B.; Herzig, Y.; Lerner, D.; Falb, E.; Ovadia, H. WO Patent Application 06/014968A2, 2006.
- (53) Finke, P. E.; Loebach, J. L.; Parker, K. A.; Plummer, C. W.; Mills, S. G. U.S. Patent Application 05/0070609A1, 2005.
- (54) Goble, S. D.; Pasternak, A.; Mills, S. G.; Zhou, C.; Yang, L. WO Patent Application 04/082616A2, 2004.
- (55) Jiao, R.; Morriello, G.; Yang, L.; Goble, S. D.; Mills, S. G.; Pasternak, A.; Zhou, C.; Butora, G.; Kothandaraman, S.; Guiadeen, D.; Tang, C.; Moyes, C. WO Patent Application 03/092586A2, 2003.
- (56) Yang, L.; Mills, S. G.; Shankaran, K. WO Patent Application 05/105092A2, 2005.
- (57) Xue, C.-B.; Zheng, C.; Cao, G.; Feng, H.; Xia, M.; Anand, R.; Glenn, J.; Metcalf, B. WO Patent Application 05/115392A2, 2005.

are those with reported diastereoselectivity resulting from the reductive amination of cyclic and bicylic ketones. The degree of selectivity in cycloalkanones varies from completely nonselective (Table 2, entry 1)<sup>79</sup> to exclusive formation of one diastereomer (Table 2, entry 6).80 Sodium triacetoxyborohydride is more sterically demanding than other "smaller" borohydrides such as sodium borohydride and cyanoborohydride.<sup>75–78</sup> As the hydride reagent favors the least hindered approach, the newly formed C-N bond-(s) in the major product(s) is(are) usually *cis* (or *syn*) to the existing substituent. A very practical and efficient synthesis of cis-N-benzyl-3-methylamino-4-methylpiperidine (Table 2, entry 7) was developed by Ripin et al.<sup>81</sup> and was carried out on about a 25 kg scale. The sodium triacetoxyborohydride reagent was generated, in situ, from NaBH<sub>4</sub> and AcOH in THF. The imine intermediate was prepared by reacting N-benzyl-4-methylpiperidin-3-one with methylamine in toluene/THF/EtOH solvent mixture. The imine solution was added to the triacetoxyborohydride suspension to effect the reduction and provide an excellent yield (92%) of the product, in 86:14 ratio in favor of the desired cis-diastereomer.

Conlon et al. reported another case of practical and efficient diastereocontrol in the synthesis of an anti-HIV drug

- (58) Xue, C.-B.; Zheng, C.; Feng, H.; Xia, M.; Glenn, J.; Cao, G.; Metcalf, B. W. WO Patent Application 06/004741A2, 2006.
- (59) Xue, C.-B.; Metcalf, B.; Han, A. Q.; Robinson, D. J.; Zheng, C.; Wang, A.; Zhang, Y. WO Patent Application 05/060665A2, 2005.
- (60) Schwink, L.; Boehme, T.; Gossel, M.; Stengelin, S. WO Patent Application 05/070898A1, 2005.
- (61) Goehring, R. R.; Whitehead, J.; Shao, B. WO Patent Application 05/ 075459A1, 2005.
- (62) Hu, T. Q.; Pikulik, I. I.; Williams, T. WO Patent Application 04/038091A1, 2004.
- (63) Mewshaw, R. E.; Meagher, K. L. WO Patent Application 00/064886A1, 2000.
- (64) Sum, F.-W.; Malamas, M. S. WO Patent Application 02/006274A1, 2002.
- (65) Hu, B.; Sum, F.-W.; Malamas, M. S. WO Patent Application 02/06232A1, 2002.
- (66) Rewinkel, J. B. M.; Timmers, C. M.; Conti, P. G. M. WO Patent Application 02/004423A1, 2002.
- (67) Mewshaw, R. E.; Zhou, D.; Zhou, P. US Patent 00/6110956, 2000.
- (68) Mewshaw, R. E.; Zhou, P. WO Patent Application 99/051592A1, 2001.
  (69) Namil, A.; Hoffman, A.; Hellberg, M. R.; Dean, T. R.; Feng, Z.; Chen, H.-H.; Sharif, N.; Dantanarayana, A. WO Patent Application 99/032481A1, 1999.
- (70) Severns, B. S.; Hellberg, M. R.; Namil, A.; Dean, T. R.; Hoffman, A. WO Patent Application 99/032443A1, 1999.
- (71) Finke, P. E.; Chapman, K. T.; Loebach, J. L.; Maccoss, M.; Mills, S. G.; Oates, B. WO Patent Application 00/76973A1, 2000.
- (72) Sterling, J.; Sklarz, B.; Herzig, Y.; Lerner, D.; Falb, E.; Ovadia, H. U.S. Patent Application 06/0025446A1, 2006.
- (73) Asselin, M.; Ellingboe, J. W.; Mewshaw, R. E. WO Patent Application 01/034598A1, 2001.
- (74) Dutta, A. K.; Neisewander, J.; Fuchs, R.; Reith, M. E. A. Med. Chem. Res. 2000, 10 (4), 208.
- (75) Hutchins, R. O.; Adams, J.; Rutledge, M. C. J. Org. Chem. 1995, 60, (23), 7396.
- (76) Hutchins, R. O.; Markowitz, M. J. Org. Chem. 1981, 46, 3571.
- (77) Hutchins, R. O.; Su, W.-Y.; Sivakumar, R.; Cistone, F.; Stercho, Y. P. J. Org. Chem. 1983, 48 (20), 3412.
- (78) Wrobel, J. E.; Ganem, B. Tetrahedron Lett. 1981, 22 (36), 3447.
- (79) Mayer, S. C.; Pfizenmayer, A. J.; Cordova, R.; Li, W.-R.; Joullié, M. M. Tetrahedron: Asymmetry 1994, 5 (4), 519.
- (80) Kersey, I. D.; Fishwick, C. W. G.; Findlay, J. B. C.; Ward, P. Bioorg. Med. Chem. Lett. 1995, 5 (12), 1271.
- (81) Ripin, D. H. B.; Abele, S.; Cai, W.; Blumenkopf, T.; Casavant, J. M.; Doty, J. L.; Flanagan, M.; Koecher, C.; Laue, K. W.; McCarthy, K.; Meltz, C.; Munchhoff, M.; Pouwer, K.; Shah, B.; Sun, J.; Teixeira, J.; Vries, T.; Whipple, D. A.; Wilcox, G. Org. Process Res. Dev. 2003, 7 (1), 115.

Table 1. Reductive amination of saturated alicyclic and heterocyclic ketones<sup>a</sup>

| Entry | Reductive Amination Product | Conditions | Yield  | Reference |
|-------|-----------------------------|------------|--------|-----------|
|       | ~                           | STAB-H     |        |           |
|       |                             | DCE        | 0.00%  | 27        |
|       |                             | AcOH       | 98%    | 37        |
|       |                             | 1.5 h      |        |           |
|       |                             | STAB-H     |        |           |
| 2     | Ph-N_N <sup>*</sup>         | DCE        | 96%    | 37        |
|       |                             | 2 h        |        |           |
|       |                             | STAB-H     |        |           |
| 2     |                             | DCM        | 000    | 40        |
| 3     |                             | 4A MS      | 99%    | 49        |
|       | CN CN                       | 24 h       |        |           |
|       |                             | STAB-H     |        |           |
|       |                             | DCE        | 0.5.07 | 27        |
| 4     |                             | AcOH       | 85%    | 37        |
|       |                             | 24 h       |        |           |
|       | СООН                        | STAB-H     |        |           |
| 5     |                             | THF        | 75%    | 50        |
|       |                             | overnight  |        |           |
|       | Br                          | STAB-H     |        |           |
|       |                             | DCE        |        |           |
| 6     |                             | AcOH       | 89%    | 37        |
|       | Г V Н                       | 48 h       |        |           |
|       |                             | STAB-H     |        |           |
|       |                             | DCE        |        |           |
| 7     | NHPh                        | AcOH       | 85%    | 37        |
|       |                             | 6 h        |        |           |
|       |                             | STAB-H     |        |           |
|       |                             | DCE        |        |           |
| 8     |                             | AcOH       | 35%    | 51        |
|       |                             | 22h        |        |           |
|       |                             | rt         |        |           |
|       | HN-                         | STAB-H     |        |           |
| 9     | O <sub>2</sub> N            | DCE        | 69%    | 52        |
|       |                             | 50h        |        |           |
|       | COstBu                      | STAB-H     |        |           |
|       |                             | DCE        |        |           |
| 10    |                             | AcOH       | 92%    | 53        |
|       | HO F                        | 16 h       |        |           |
|       | major isomer                | rt         |        |           |

| $ \begin{array}{ccccccc} & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Entry | Reductive Amination Product                                              | Conditions | Yield                                                    | Reference |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------|------------|----------------------------------------------------------|-----------|
| $ \begin{array}{ccccccc} & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | ~ 1                                                                      | STAB-H     |                                                          |           |
| $11 \qquad $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11    | -COoMe                                                                   | DCM        | 70%                                                      | 40        |
| $12 \qquad \begin{array}{cccc} & 2h & & & \\ & & & \\ & & & \\ & & \\ 12 \qquad & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | N *                                                                      | 4A MS      | 1070                                                     | 49        |
| $12 \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                                                                          | 2h         |                                                          |           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | L СО-Ме                                                                  | STAB-H     |                                                          |           |
| $\begin{array}{c c c c c c c } & 4A  MS & 24 h & 54 & 54 & \\ \hline & & & & & & & & & & & & \\ \hline & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12    |                                                                          | DCM        | 29%                                                      | 49        |
| $13 \qquad \begin{array}{c c c c c c } & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12    | Ň÷                                                                       | 4A MS      | 2770                                                     |           |
| 13 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                                                                          | 24 h       |                                                          |           |
| $\begin{array}{c ccccc} 13 & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                          | STAB-H     |                                                          |           |
| $14 \qquad \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ \\$ | 13    | OCH3                                                                     | DCM        |                                                          | 54        |
| $14 \qquad \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                                                          | overnight  |                                                          |           |
| $ \begin{array}{ccccccc} 14 & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |                                                                          | STAB-H     |                                                          |           |
| 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14    |                                                                          | DCM        |                                                          | 54        |
| $15 \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | ŇH                                                                       | overnight  |                                                          | 51        |
| $15 \qquad \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                          | overnight  |                                                          |           |
| $15 \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | н Р                                                                      | STAB-H     |                                                          |           |
| $16 \qquad \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15    |                                                                          | DCM        | 97%                                                      | 55        |
| $16 \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                                                                          | 2h         |                                                          |           |
| $16 \qquad \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | $\sqrt{\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $ | STAB-H     |                                                          |           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.0   |                                                                          | DCM        |                                                          | ~~~       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16    | R OH NH                                                                  | 4A MS      |                                                          | 56        |
| $17 \qquad \begin{array}{c} & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | $R = CH_3; CF_3$                                                         | overnight  |                                                          |           |
| $17 \qquad \begin{array}{c} 17 \end{array} \\ 17  \begin{array}{c} 17 \end{array} \\ 18 \end{array} \end{array} \end{array} \right)} \begin{array}{c} 18 \qquad \begin{array}{c} 18 \qquad \begin{array}{c} 17  \begin{array}{c} 17  \begin{array}{c} 17  \begin{array}{c} 17  \begin{array}{c} 17 \end{array} \\ 18 \end{array} \\ 18 \end{array} \right)} \begin{array}{c} 18  \begin{array}{c} 17  \begin{array}{c} 17  \begin{array}{c} 17  \begin{array}{c} 17 \end{array} \\ 18 \end{array} \\ 19 \end{array} \end{array} \right)} \begin{array}{c} 17  \begin{array}{c} 17  \begin{array}{c} 17  \begin{array}{c} 17  \begin{array}{c} 17 \end{array} \\ 18 \end{array} \\ 19 \end{array} \\ 19  \begin{array}{c} 17  \begin{array}{c} 17  \begin{array}{c} 17  \begin{array}{c} 17  \begin{array}{c} 17  \end{array} \\ 17  \begin{array}{c} 17  \begin{array}{c} 17  \end{array} \\ 18 \end{array} \\ 19 \end{array} \\ 19  \begin{array}{c} 17  \begin{array}{c} 17  \begin{array}{c} 17  \end{array} \\ 17  \begin{array}{c} 17  \end{array} \\ 17  \begin{array}{c} 17  \end{array} \\ 18  \begin{array}{c} 18  \end{array} \\ 18  \begin{array}{c} 17  \end{array} \\ 18  \begin{array}{c} 18  \end{array} \\ 18  \end{array} \\ 19  \begin{array}{c} 17  \end{array} \\ 18  \begin{array}{c} 17  \end{array} \\ 18  \end{array} \\ 19  \begin{array}{c} 17  \end{array} \\ 18  \begin{array}{c} 17  \end{array} \\ 18  \end{array} \\ 19  \begin{array}{c} 17  \end{array} \\ 18  \begin{array}{c} 17  \end{array} \\ 18  \end{array} \\ 19  \begin{array}{c} 18  \end{array} \\ 18  \begin{array}{c} 18  \end{array} \\ 18  \end{array} \\ 19  18  \end{array} \\ 19  18  \end{array} \\ 19  18  18  18  18  18  18  18 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                                                                          | STAB-H     |                                                          |           |
| $ \begin{array}{ccccccc} & & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | н                                                                        | DCM        | 42%                                                      |           |
| $18 \qquad \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17    | o Ph                                                                     |            | isolated as<br><i>N</i> -COCF <sub>3</sub><br>derivative | 54        |
| $18 \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                                                                          | avernight  |                                                          |           |
| $18 \qquad \begin{array}{c} 18 \\ 18 \\ 19 \\ 20 \\ 20 \\ 19 \\ 20 \\ 19 \\ 19 \\ 19 \\ 19 \\ 19 \\ 19 \\ 19 \\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |                                                                          | CTAD II    |                                                          |           |
| $18 \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | НО                                                                       | STAD-H     |                                                          |           |
| $19 \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18    | ↑ N → Ph                                                                 |            | 84%                                                      | 54        |
| $19 \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                                                                          | 4A MS      |                                                          |           |
| 19<br>19<br>$\downarrow \downarrow $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                          | overnight  |                                                          |           |
| 19<br>19<br>$ \begin{array}{c}  & & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & \\  & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                                                                          |            |                                                          |           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                                                                          | STAB-H     |                                                          |           |
| $20 \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19    | * NH                                                                     | DCM        |                                                          | 57        |
| $20 \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                                                                          | overnight  |                                                          |           |
| 20 $F_{3}C$ $HN$ $HN$ $Overnight$ STAB-H DCM 92% 58 Overnight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | ОН                                                                       |            |                                                          |           |
| 20 $F_3C$ $HN * O$ $DCM = 92\%$ 58 $Overnight$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                                                          | STAR H     |                                                          |           |
| $F_{3}C \xrightarrow{N} H_{N,*} \xrightarrow{I} O$ $Overnight$ $J = 0$ $J = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20    |                                                                          |            | 97%                                                      | 58        |
| overnight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20    | F <sub>3</sub> C N HN +                                                  | Overnight  | 9210                                                     | 50        |
| n300 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | H <sub>3</sub> CO <sup>L</sup> Ó                                         |            |                                                          |           |

| Entry | <b>Reductive Amination Product</b>                                                                       | Conditions                      | Yield                         | Reference |
|-------|----------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------|-----------|
| 21    | HO Ph NH CF3                                                                                             | STAB-H<br>THF                   |                               | 59        |
| 22    |                                                                                                          | STAB-H<br>DCE<br>48h            |                               | 60        |
| 23    |                                                                                                          | STAB-H<br>DCE<br>overnight      | 81%                           | 61        |
| 24    |                                                                                                          | STAB-H<br>DCE<br>AcOH           | 96%                           | 37        |
| 25    | $\begin{array}{c} Y_{N} \\ \downarrow \\ \downarrow \\ H \\ H$             | STAB-H<br>DCM<br>AcOH<br>2 h    | Y= 0,<br>43%<br>Y = H,<br>36% | 62        |
| 26    | CH <sub>3</sub> O<br>N · CN<br>NH                                                                        | STAB-H<br>DCE/AcOH<br>overnight | 40%                           | 63        |
| 27    |                                                                                                          | STAB-H<br>DMF<br>AcOH<br>24 h   | 40%                           | 64        |
| 28    |                                                                                                          | STAB-H<br>DMF<br>AcOH<br>24h    | 68%                           | 64        |
| 29    | HO<br>HN<br>OSSO<br>HO<br>HO<br>HN<br>N<br>N<br>N<br>O<br>SSO<br>O<br>HO<br>HN<br>O<br>C-Bu<br>O<br>C-Bu | STAB-H<br>DMF<br>AcOH<br>24h    | 80%                           | 64        |
| 30    | HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>H                          | STAB-H<br>DMF<br>AcOH<br>24h    | 71%                           | 65        |
| 31    |                                                                                                          | STAB-H<br>DMF<br>AcOH<br>16h    | 80%                           | 66        |

| Entry | Reductive Amination Product | Conditions | Yield   | Reference   |
|-------|-----------------------------|------------|---------|-------------|
|       | E                           | STAB-H     |         |             |
| 20    | OCH3                        | DCE        | 7107    | 67          |
| 52    |                             | АсОН       | /1%     | 07          |
|       |                             | 4 h        |         |             |
|       | ни                          | STAB-H     |         |             |
| 33    | ↓ ↓ N×                      | DCE        | 48%     | 67          |
| 55    |                             | АсОН       | 4070    | 07          |
|       |                             | 4 h        |         |             |
|       |                             | STAB-H     |         |             |
| 24    |                             | DCE        | 6401    | 67          |
| 54    |                             | АсОН       | 64%     | 07          |
|       | F                           | 5 h        |         |             |
|       | P F                         | STAB-H     |         |             |
| 25    |                             | DCE        |         | <i>(</i> 0) |
| 35    | H H                         | AcOH       | 66%     | 68          |
|       | ŃH                          | 16 h       |         |             |
|       |                             | STAB-H     |         |             |
| 36    |                             | DCE        | 61%     | 69          |
| 30    |                             | AcOH       | 0170    |             |
|       |                             | 72 h       |         |             |
|       |                             | STAB-H     |         |             |
|       |                             | DCE        |         | <i>(</i> 0  |
| 37    |                             | АсОН       | 76%     | 69          |
|       | 0                           | 2 h        |         |             |
|       |                             | STAB-H     |         |             |
| 20    |                             | DCM        | 170     | 70          |
| 38    |                             | AcOH       | 1/%     | 70          |
|       |                             | 2d         |         |             |
|       |                             | STAB-H     |         |             |
| 20    |                             | DCE        | 99%     | 71          |
| 39    |                             | AcOH       | (crude) | /1          |
|       | ×                           | 3h         |         |             |
|       | Υ ο.                        | STAB-H     |         |             |
| 40    | N <sup>w</sup>              | DCE        | 84%     | 52,72       |
|       |                             | 40h        |         |             |
|       |                             | STAB-H     |         |             |
| 41    | <u>N</u> -∼()N-0 ·          | DCE        | 36%     | 52,72       |
|       |                             | 32h        |         |             |
|       | HN                          | STAB-H     |         |             |
| 42    |                             | DCE        | 71%     | 52,72       |
|       | $  \neq_{N} \downarrow$     | 40h        |         |             |
|       | 0.                          |            |         |             |

| <b>Reductive Amination Product</b>                            | Conditions                                                                                                             | Yield                                 | Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F I                                                           | STAB-H                                                                                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                               | DCE                                                                                                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                               | AcOH                                                                                                                   | 54%                                   | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ph-                                                           | 23 °C                                                                                                                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ph                                                            | 12 h                                                                                                                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\sim \sim$                                                   | STAB-H                                                                                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PhHN                                                          | DCE                                                                                                                    | 97%                                   | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                               | AcOH                                                                                                                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                               | STAB-H                                                                                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                               | THF                                                                                                                    | 58%                                   | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                               | AcOH                                                                                                                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                               | STAB-H                                                                                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\sim$                                                        | DCE                                                                                                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CH30                                                          | AcOH                                                                                                                   | 84%                                   | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Н                                                             | rt                                                                                                                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                               | 12h                                                                                                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\sim$                                                        | STAB-H                                                                                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                               | DCE                                                                                                                    | 96%                                   | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| н                                                             | AcOH                                                                                                                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\frown$                                                      | STAB-H                                                                                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                               | DCE                                                                                                                    | 95%                                   | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| H                                                             | AcOH                                                                                                                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| OC <sub>2</sub> H <sub>5</sub>                                | STAB-H                                                                                                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\rightarrow$ $\rightarrow$ NH OC <sub>2</sub> H <sub>5</sub> | DCE                                                                                                                    | 88%                                   | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                               | АсОН                                                                                                                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                               | Reductive Amination Product $ = \int_{-\infty}^{\infty} \int_{+\infty}^{+} (-+) (+) (+) (+) (+) (+) (+) (+) (+) (+) ($ | Reductive Amination ProductConditions | Reductive Amination ProductConditionsYieldSTAB-HSTAB-HDCE $a 	ext{CH}$ $23 \ ^{\circ}\text{C}$ $23 \ ^{\circ}\text{C}$ $ph + ph$ $23 \ ^{\circ}\text{C}$ $23 \ ^{\circ}\text{C}$ $ph + ph$ DCE $A \ ^{\circ}\text{CH}$ $ph + ph$ DCE $P7\%$ $A \ ^{\circ}\text{CH}$ STAB-H $P7\%$ $A \ ^{\circ}\text{CH}$ DCE $A \ ^{\circ}\text{CH}$ $P \ ^{\circ}\ ^{\circ}$ |

<sup>*a*</sup> Note: Newly formed C–N bonds are labeled by asterisks (\*); a blank entry for yield indicates no yield was given; STAB-H = sodium triacetoxyborohydride; DCE = 1,2-dichloroethane; DCM = dichloromethane; DMF =  $N_N$ -dimethylformamide; THF = tetrahydrofuran; AcOH = acetic acid; MS = molecular sieves; rt = room temperature.

candidate (compound **B**, Table 2, entry 8).<sup>82</sup> While other cases listed here are diastereoselective based on steric effects that produce *cis*-products, the key step in this synthesis is a unique hydroxy-directed reductive amination of (+)-*trans*-3-hydroxymethyl-4-(3-fluorophenyl)cyclopentanone with Dvaline, *tert*-butyl ester, to prepare compound **A** in which the *trans*-product was favored. The researchers were able to improve the selectivity of the reductive amination with STAB-H from a 1.9:1 ratio in DCE at rt to about 7:1 in favor of the desired *trans*-diastereomer by carrying out the reaction in dry acetonitrile, by elevating the reaction temperature to 50 °C and by increasing the stoichiometric ratio of D-valine ester. Further improvement was obtained by using

sodium tripropoxyborohydride (prepared *in situ* from propionic acid and NaBH<sub>4</sub> in dry acetonitrile). The increased bulk of this hydride reagent and higher reaction temperature (70 °C) gave a 10:1 ratio favoring the *trans*-isomer. The reaction was carried out on about a 4 mol scale, and the product was converted directly to the *N*-methyl derivative by a second reductive amination with formalin using STAB-H. This sequence provided compound **A** in 61% isolated yield for the two reductive amination steps. To finish the synthesis a third reductive amination was carried out on the corresponding aldehyde to prepare compound **B** in 99% yield.

In the preparation of the CCR2-inhibitor listed in Table 2, entry 9, the final step is a reductive amination of (3R)-3-methoxytetrahydro-4*H*-pyran-4-one with a cyclopente-namine derivative. The reaction was carried out in an

<sup>(82)</sup> Conlon, D. A.; Jensen, M. S.; Palucki, M.; Yasuda, N.; Um, J. M.; Yang, C.; Hartner, F. W.; Tsay, F.-R.; Hsiao, Y.; Pye, P.; Rivera, N. R.; Hughes, D. L. *Chirality* **2005**, *17* (Suppl.), S149.

| <b>Table 2.</b> Diastereoselectivity in reductive amination of alloyclic ketones and bicyclic keto |
|----------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------|

| Entry | Reductive Amination Product                | Conditions                         | Yield            | Reference |
|-------|--------------------------------------------|------------------------------------|------------------|-----------|
| *     | 0 OCH3                                     | STAB-H                             |                  |           |
| 1     | H <sub>3</sub> CO                          | DCM                                | 99%              | 79        |
|       |                                            | АсОН                               | dr 1 : 1         |           |
|       |                                            | STAB-H                             |                  |           |
|       |                                            | DCE                                | 98%              |           |
| 2     | Not son                                    | АсОН                               | a/e = 71 : 29    | 37        |
|       |                                            | 10 min                             |                  |           |
|       |                                            | STAB-H                             |                  |           |
| 2     | HN                                         | DCE                                | 96%              | 27        |
| 3     | × N H                                      | АсОН                               | a/e = 79 : 21    | 37        |
|       |                                            | 30 min                             |                  |           |
|       | о Гон                                      | STAB-H                             | 99%              |           |
| 1     |                                            | DCE                                | $\alpha/\beta =$ | 37        |
| +     |                                            | АсОН                               | - wp =           | 51        |
|       |                                            | 24 h                               | 15:25            |           |
|       |                                            | STAB-H                             | 70%              |           |
| 5     |                                            | DCE                                | dr 82 : 18       | 87        |
|       | CH <sub>2</sub> OBI '' CH <sub>2</sub> OBn |                                    |                  |           |
|       |                                            |                                    |                  |           |
| 6     |                                            | STAB-H                             | 61%              | 80        |
|       |                                            | DCE                                | only product     | 00        |
|       | Boc                                        |                                    |                  |           |
|       |                                            | STAB-H                             |                  |           |
| 7     |                                            | THF                                | 92%              | 81        |
|       | N <sup>™</sup> →<br>H                      | AcOH                               | dr 86:14         |           |
|       |                                            | 2.5 h                              |                  |           |
|       |                                            | <u>Step 1:</u>                     |                  |           |
|       | NCO₂t-Bu<br>*                              | NaBH(OCOEt) <sub>3</sub>           | 61%              |           |
|       |                                            | CH <sub>3</sub> CN                 | (dr 7 : 1)       | 82        |
|       | HO-F                                       | 70 °C                              |                  |           |
|       | A \/                                       | 30 min                             |                  |           |
|       |                                            | Step 2:                            |                  |           |
| 8     | <u> </u>                                   | STAB-H                             |                  |           |
|       | <br>ŊCO₂t-Bu                               | CH <sub>2</sub> O/H <sub>2</sub> O |                  |           |
|       |                                            | Rt                                 | 99%              | 82        |
|       |                                            | 30 min                             |                  |           |
|       |                                            | Step 3:                            |                  |           |
|       | Pn B                                       | STAB-H                             |                  |           |
|       |                                            | DCM                                |                  |           |
|       |                                            |                                    |                  |           |

| Entry | <b>Reductive Amination Product</b> | Conditions                      | Yield            | Reference |
|-------|------------------------------------|---------------------------------|------------------|-----------|
|       |                                    | STAB-H                          |                  |           |
| 0     |                                    | <i>i</i> -PrOAc/ <i>i</i> -PrOH | 0.00%            | 02        |
| 9     |                                    | 1 °C – rt                       | 90%              | 0.5       |
|       |                                    | 6 h                             |                  |           |
|       | F                                  |                                 |                  |           |
|       |                                    | STAB-H                          | 4.0. 2.4.0       |           |
| 10    |                                    | DCE                             | 4 <i>K</i> : 34% | 88        |
|       |                                    | 24 h                            | 45: 29%          |           |
|       | CF <sub>3</sub>                    |                                 |                  |           |
|       |                                    | STAB-H                          |                  |           |
|       |                                    | DCE                             | 0.5%             | 27        |
| 11    |                                    | АсОН                            | 95%              | 37        |
|       | NHOH2 H                            | 6 h                             |                  |           |
|       |                                    | STAB-H                          |                  |           |
| 10    |                                    | DCE                             |                  |           |
| 12    | NHPh                               | AcOH                            | /6%              | 57        |
|       |                                    | 24 h                            |                  |           |
|       |                                    | STAB-H                          |                  |           |
| 13    | N(Et) <sub>2</sub>                 | DCE                             | 20%              | 27        |
|       |                                    | AcOH                            | /9%              | 3/        |
|       |                                    | 96 h                            |                  |           |
|       | ~_N                                | STAB-H                          |                  |           |
| 14    | NHCH <sub>2</sub> Ph               | DCE                             | 85%              | 27        |
| 14    |                                    | АсОН                            |                  | 37        |
|       |                                    | 20 h                            |                  |           |
|       | N X                                | N. D.WOGOD)                     |                  |           |
| 15    |                                    | DCM                             | 77-89%           | 84        |
|       | NHCH <sub>2</sub> Ph               |                                 |                  |           |
|       |                                    | STAB-H                          |                  |           |
| 16    |                                    | DCE                             | 99%              | 89        |
|       | NHCH <sub>2</sub> Ph               | 18 h                            |                  |           |
|       | N.                                 | STAB-H                          |                  |           |
| 17    |                                    | DCE                             | 95%              | 37        |
|       |                                    | AcOH                            |                  |           |
|       |                                    | STAB-H                          |                  |           |
|       |                                    | DCE                             |                  |           |
| 18    |                                    | AcOH                            | 60%              | 37        |
|       | 1:1 endo-/exo <sup>r</sup> N       | 4 d                             |                  |           |
|       |                                    | - 4                             |                  | 1         |

| Entry | Reductive Amination Product                                        | Conditions                          | Yield                    | Reference |
|-------|--------------------------------------------------------------------|-------------------------------------|--------------------------|-----------|
| 19    | PhCH <sub>2</sub> NH <sup>1</sup> , $H$<br>+ 2 minor diastereomers | STAB-H                              | 96%                      | 85        |
| 20    | H<br>N<br>Ph                                                       | STAB-H<br>THF<br>overnight          | 30%                      | 90        |
| 21    | H <sub>3</sub> CO NH Ph                                            | STAB-H<br>AcOH<br>4.5_h             | 86%                      | 86        |
| 22    | * NHBn NHBn                                                        | STAB-H<br>DCM<br>6_h                | 98%                      | 91        |
| 23    |                                                                    | STAB-H<br>DCE<br>AcOH<br>24 h<br>rt | R = Ph 21%<br>R = Bn 59% | 92        |

<sup>*a*</sup> Note: Newly formed C–N bonds are labeled by asterisks (\*); a blank entry for yield indicates no yield was given; STAB-H = sodium triacetoxyborohydride; DCE = 1,2-dichloroethane; DCM = dichloromethane; THF = tetrahydrofuran; AcOH = acetic acid; rt = room temperature.

*i*-PrOAc/*i*-PrOH solvent mixture on a relatively large scale of 0.5 kg. The reaction proceeded with the exclusive formation of the *cis*-product to give an excellent isolated yield of 90%.<sup>83</sup>

The kind of stereochemical control based on steric factors is also observed in bicyclic ketones. Bicyclic ketones such as norcamphor and tropinone are successfully reductively aminated with primary and secondary amines in good to excellent yields (Table 2, entries 11-17). The reactions involving these ketones usually show high levels of diastereoselectivity towards the endo-products. Products from norcamphor and primary or secondary amines are exclusively endo-, while those obtained from tropinone with primary amines show about a 15:1 ratio of the endo- to exoproducts. An exception is the reaction of tropinone with secondary amines such as piperidine, which is very slow and gives a 1:1 ratio of the endo- and exo-products (Table 2, entry 18).<sup>37</sup> In the synthesis of zatosetron, an agonist of 5HT<sub>3</sub> receptor, the key intermediate is 3-endo-tropamine. McGill et al.<sup>84</sup> prepared this amine in a 12:1 ratio of endo/exo products by the reductive amination of tropinone with benzylamine using STAB-H and subsequent hydrogenolysis to cleave the benzyl group. In addition to about 7% of the undesired exo-product, the reaction was also accompanied

by large amounts of *N*-benzylacetamide. A study carried out by the group showed that replacing the acetoxy groups in NaBH(OAc)<sub>3</sub> with larger acyloxy groups, increased the steric bulk of the reagent, and led to formation of a higher ratio of *endo/exo*-products. The best result came from using tri(2-ethylhexanoyl)borohydride which gave a >50:1 ratio of *endo/exo*-products and no amine acylation (Table 2, entry 15).

The reductive amination of *cis*-bicyclo[3.3.0]octane-3,7dione (Table 2, entry 19) gives the symmetric diamine product in 96% yield with a slight contamination of two minor diastereomers.<sup>85</sup>

The 3-amino-1-azabicyclo[2.2.2]octane derivative listed in Table 2, entry 21, was prepared effectively on a 1 mol scale by the reduction of the corresponding imine at 25 °C with sodium triacetoxyborohydride to give the amine in 86% isolated yield.<sup>86</sup> The reported isolated product has *cis*stereochemistry, but no ratio of products was given.

Thus, whenever structurally possible, STAB-H is a useful and very effective reagent in diastereoselctive formation of amines via reductive amination based on steric factors. In many reported cases, increasing the diastereoselectivity may be benefited from examining other bulkier triacyloxyborohydrides as seen in some of the above examples. The reductive amination of hydroxyketones is another effective

<sup>(83)</sup> Cai, D.-W.; Fleitz, F.; Ge, M.; Hoerrner, S.; Javadi, G.; Jensen, M.; Larsen, R.; Li, W.; Nelson, D.; Szumigala, E.; Yang, L.; Zhou, C. WO Patent Application 05/044795A1, 2005.

<sup>(84)</sup> McGill, J. M.; LaBell, E. S.; Williams, M. Tetrahedron Lett. 1996, 37 (23), 3977.

<sup>(85)</sup> Camps, P.; Munoz-Torrero, D.; Perez, F. J. J. Chem. Res., Synop. 1995, 232.

<sup>(86)</sup> Godek, D. M.; Murtiashaw, C. W. U.S. Patent 95/5442068, 1995.

method for achieving diastereocontrol; however, it is not yet widely used.

2.c: Saturated Acyclic Ketones. Saturated acyclic ketones also undergo facile reductive amination with both primary and secondary amines. The reactions may be slower, and the isolated yields may be lower than the alicyclic ketones, particularly with hindered secondary amines. Some of the slow reactions are accelerated by adding 1-2 equiv of AcOH, the use of about a 5-10% excess of the amine, and 2 or more equivalents of sodium triacetoxyborohydride. Examples of products obtained by reductive amination of several saturated acyclic ketones are shown in Table 3. In some of these slow reductive aminations, (e.g., Table 3, entries 2 and 7), some side reactions may occur. These include N-acetylation and N-ethylation of the starting amines and to a lesser extent the product amines. The N-acetylation is believed to be the result of nucleophilic attack by the amines on the triacetoxyborohydride.<sup>18,36</sup> The N-ethylation of amines is a well-known process in the reaction of amines with sodium borohydride in neat acetic acid and is believed to proceed through acetaldehyde formation under the reaction conditions.35 As mentioned above, addition of acetic acid is a common practice to accelerate slow reactions. Sometimes, it is the addition of acetic acid that causes the increase in the amount of these side reactions. The use of trifluoroacetic acid instead of AcOH may eliminate or decrease the formation of these side products.

While the majority of the reactions listed here are carried out in DCE, DCM, or THF, the reductive amination of acetone with 1-benzyl-4-aminopiperidine (Table 3, entry 16)<sup>44,93</sup> was carried out in methanol. The reaction mixture was cooled to 5 °C for 30 min prior to addition of STAB-H; after stirring at rt for 2 h the reaction was worked up. The product was isolated in a very high yield of 95%. However, when the reaction was scaled up to a 2 kg scale, it was carried out in DCM (Table 3, entry 17). The mixture was cooled to 0-5 °C before adding STAB-H, and the reaction was worked up after stirring for 3 h at 25 °C. This reductive amination reaction performed equally well on the larger scale to give an isolated yield of 96% of 1-benzyl-4isopropylaminopiperidine.

**3. Reductive Amination of Aldehydes.** Sodium triacetoxyborohydride was introduced by Gribble et al. as a selective reducing agent that reduces aldehydes but not ketones.<sup>32–34</sup> However, under the standard reaction conditions the reductive aminations with aldehydes occur very effectively and result in fast reactions with no aldehyde

- (87) Barrett, A. G. M.; Boys, M. L.; Boehm, T. L. J. Chem. Soc., Chem. Commun. 1994, 16, 1881.
- (88) Alvaro, G.; Di Fabio, R.; Maragni, P.; Tampieri, M.; Tranquillini, M. E. WO Patent Application 02/032867A1, 2002.
- (89) Kazmierski, W. M.; Aquino, C. J.; Bifulco, N.; Boros, E. E.; Chauder, B. A.; Chong, P. Y.; Duan, M.; Deanda, F. J.; Koble, C. S.; McLean, E. W.; Peckham, J. P.; Perkins, A. C.; Thompson, J. B.; Vanderwall, D. WO Patent Application 04/054974A2, 2004.
- (90) Boyd, R. E.; Reitz, A. B. WO Patent Application 04/035574A2, 2004.
- (91) Berkessel, A.; Schröeder, M.; Sklorz, C. A.; Tabanella, S.; Vogl, N.; Lex, J.; Neudöerfl, J. M. J. Org. Chem. 2004, 69 (9), 3050.
- (92) Vilsmaier, E.; Roth, W.; Bergsträsser, U. J. Mol. Struct. 1999, 513 (1-3), 21.
- (93) Wilson, R. D.; Congdon, J.; Mammen, M.; Zhang, W.; Chao, R. WO Patent Application 05/042514A2, 2005.

reduction in most cases. Both aliphatic and aromatic aldehydes are very reactive and give reductive amination products with nearly all kinds of primary and secondary amines. In most reactions, the aldehyde and amine are mixed in stoichiometric amounts in DCE, THF, or any other solvent of choice with 1.4-1.5 equiv of NaBH(OAc)<sub>3</sub>. The reaction times are usually much shorter than those with ketones, and nearly all reactions are complete within 20 min to 24 h. The mild reaction conditions, the convenient procedure, and the easy workup and isolation of products can tolerate the presence of different functionalities and allow the application of the reaction to a wide range of aldehydes with variable degrees of structural complexities.

**3.a:** Reductive Amination of Aldehydes with Primary Amines. These reactions are typically the easiest, fastest, and highest yielding reactions. This type of reductive amination is carried out using the standard conditions, and most do not require the use of acid activation. There are only very few limitations with highly unreactive primary amines such as 2,4-dinitroaniline, particularly with aromatic aldehydes. Aldehydes and primary amines condense readily (completely or partially) to form imines in most solvents, particularly in methanol, THF, and DCE.<sup>37</sup> It may be possible to use this property to carry out indirect stepwise reductive amination effectively as an alternative to the direct procedure. Representative examples of reductive amination of aldehydes with primary amines are illustrated in Table 4.

The mild nature of sodium triacetoxyborohydride is well demonstrated in the reductive amination of aldehydes such as 1,1',2'-tris-nor-squalene aldehyde (Table 4, entry 43)<sup>37</sup> and hexa-4,5-dienal (Table 4, entries 44–47).<sup>99</sup> These aldehydes were converted to the corresponding amines in good yields under STAB-H reductive amination standard conditions with no detectable aldehyde reduction or other side reactions. This is a significant improvement over other literature procedures.<sup>100,101</sup>

A testimony to the convenient and safe use of STAB-H comes from the use of the reductive amination procedure as an undergraduate lab experiment. The procedure for reductive amination of piperonal with *p*-toluidine to form *N*-(*p*-tolyl)-piperonylamine (Table 4, entry 53) was introduced as an experiment for a second-semester organic chemistry class.<sup>102</sup>

An interesting reaction is that involving the reductive amination of a stable ozonide aldehyde with several primary

- (94) Lim, M.-I.; Pan, Y.-G.; Popp, M. WO Patent Application 02/047635A1, 2002.
- (95) Mantell, S. J.; Monaghan, S. M.; Stephenson, P. T. WO Patent Application 02/000676A1, 2002.
- (96) Mahmoud, A. E.; Waseem, G. WO Patent Application 06/002105A1, 2006.
- (97) Cherney, R. J.; Carter, P.; Duncia, J. V.; Gardner, D. S.; Santella, J. B. WO Patent Application 04/071460A2, 2004.
- (98) Al-awar, R. S.; Ray, J. E.; Hecker, K. A.; Joseph, S.; Huang, J.; Shih, C.; Brooks, H. B.; Spencer, C. D.; Watkins, S. A.; Schultz, R. M.; Considine, E. L.; Faul, M. M.; Sullivan, K. A.; Kolis, S. P.; Carr, M. A.; Zhang, F. *Bioorg. Med. Chem. Lett.* **2004**, *14* (15), 3925.
- (99) Davies, I. W.; Gallagher, T.; Lamont, R. B.; Scopes, D. I. C. J. Chem. Soc., Chem. Commun. 1992, 335.
- (100) Ceruti, M.; Balliano, G.; Viola, F.; Cattel, L.; Gerst, N.; Schuber, F. Eur. J. Med. Chem. 1987, 22 (3), 199.
- (101) Duriatti, A.; Bouvier-Nave, P.; Benveniste, P.; Schuber, F.; Delprino, L.; Balliano, G.; Cattel, L. *Biochem. Pharmacol.* **1985**, *34* (15), 2765.
- (102) Carlson, M. W.; Ciszewski, J. T.; Bhatti, M. M.; Swanson, W. F.; Wilson, A. M. J. Chem. Educ. 2000, 77 (2), 270.

Table 3. Reductive amination of saturated alicyclic ketones<sup>a</sup>

| Entry | <b>Reductive Amination Product</b> | Conditions | Yield  | Reference |
|-------|------------------------------------|------------|--------|-----------|
|       |                                    | STAB-H     |        |           |
| 1     |                                    | DCE        | 9101   | 27        |
| 1     | H H                                | АсОН       | 0470   | 57        |
|       |                                    | 24 h       |        |           |
|       |                                    | STAB-H     |        |           |
|       | HN∽ <sup>Ph</sup>                  | DCE        |        |           |
| 2     |                                    | АсОН       | 90%    | 37        |
|       |                                    | 96 h       |        |           |
|       |                                    | STAB-H     |        |           |
|       |                                    | DCE        |        |           |
| 3     | ×N <sup>C</sup> C <sub>SQU</sub>   | AcOH       | 84%    | 37        |
|       | Н СН                               | 12 h       |        |           |
|       |                                    | STAB-H     |        |           |
|       | NH-Ph                              | DCE        |        |           |
| 4     | Ph*                                | AcOH       | 80%    | 37        |
|       |                                    | 30 h       |        |           |
|       |                                    | STAB-H     |        |           |
|       | HN Ph                              | THF        |        |           |
| 5     |                                    | AcOH       | 71%    | 37        |
|       | $\sim$                             | 24 h       |        |           |
|       |                                    | STAB-H     |        |           |
|       |                                    | THF        |        |           |
| 6     |                                    | AcOH       | 13%    | 37        |
|       |                                    | 27 h       |        |           |
|       |                                    | STAB-H     |        |           |
| 7     | ∕_N∕_                              | THF        | 4 4 07 | 27        |
|       |                                    | АсОН       | 44%    | 57        |
|       |                                    | 192 h      |        |           |
|       |                                    | STAB-H     |        |           |
| 8     |                                    | THF        | 37%    | 37        |
|       |                                    | 48 h       |        |           |
|       | ОН                                 | STAB-H     |        |           |
| 9     |                                    | DCE        |        | 94        |
|       |                                    | AcOH       |        |           |
|       | О н                                | STAB-H     |        |           |
| 10    |                                    | DCM        | 79%    | 95        |
|       |                                    | 16 h       |        |           |
|       |                                    | STAB-H     |        |           |
| 11    |                                    | DCM        | 79%    | 95        |
|       | Н                                  | 16 h       |        |           |
|       |                                    |            |        |           |

| Entry | <b>Reductive Amination Product</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Conditions                         | Yield | Reference |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------|-----------|
| 12    | NH Ph<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH<br>HOODH | STAB-H<br>DCE<br>72 h              |       | 96        |
| 13    | $H_{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | STAB-H<br>DCE<br>AcOH<br>4h        |       | 96        |
| 14    | F <sub>3</sub> C HN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | STAB-H<br>DCE<br>20h               | 75%   | 97        |
| 15    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | STAB-H<br>AcOH<br>DCE              | 90%   | 98        |
| 16    | $\rightarrow N \rightarrow N \rightarrow N \rightarrow Ph$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STAB-H<br>MeOH<br>0°C - rt<br>3 h  | 95%   | 44,93     |
| 17    | $\rightarrow N$ $\sim$ $N$                                                                                                                                                                                                                                                      | STAB-H<br>DCM<br>0°C – 25°C<br>3 h | 96%   | 93        |
| 18    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | STAB-H<br>DCM<br>0 °C<br>rt<br>3 h | 80%   | 93        |

<sup>*a*</sup> Note: Newly formed C–N bonds are labeled by asterisks (\*); a blank entry for yield indicates no yield was given; STAB-H = sodium triacetoxyborohydride; DCE = 1,2-dichloroethane; DCM = dichloromethane; DMF = N,N-dimethylformamide; THF = tetrahydrofuran; AcOH = acetic acid; rt = room temperature.

Table 4. Reductive amination of aldehydes with primary amines<sup>a</sup>

| Entry | <b>Reductive Amination Product</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Conditions | Yield          | Reference |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|-----------|
|       | ~ ~*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | STAB-H     |                |           |
| 1     | NHPh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DCE        | 83%            | 37        |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24 h       |                |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STAB-H     |                |           |
| 2     | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | THF        | 99 <i>01</i> _ | 27        |
| 2     | CH <sub>3</sub> O HN−Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AcOH       | 00 //          | 57        |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24 h       |                |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STAB-H     |                |           |
| 2     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DCE        | 05.07          | 27        |
| 5     | CH <sub>3</sub> O HN-Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AcOH       | 95%            | 57        |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 min     |                |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STAB-H     |                |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AcOH       | 0.6 01         | 107       |
| 4     | N OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20 °C      | 80%            | 107       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12-18 h    |                |           |
|       | QCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STAB-H     |                |           |
| -     | Ģi н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AcOH       |                | 107       |
| 5     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25 °C      | 92%            | 107       |
|       | OCH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23 h       |                |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STAB-H     |                |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DCE        |                |           |
| 6     | N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AcOH       | 92%            | 37        |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 h        |                |           |
|       | Λ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STAB-H     |                |           |
| 7     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DCE        | 85%            | 37        |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 min     |                |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STAB-H     |                |           |
| 8     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DCE        | 66%            | 37        |
|       | EB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24 h       |                |           |
|       | 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STAB-H     |                |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AcOH       |                |           |
| 9     | HN TO NOT THE REAL PROPERTY OF | rt         | 83%            | 108       |
|       | ÓСН <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | overnight  |                |           |
|       | NO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                |           |
| 10    | HN × NO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | STAB-H     | 9201           | 100       |
| 10    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | АсОН       | 03%            | 109       |
|       | O' N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                |           |
|       | Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                |           |

| Entry | <b>Reductive Amination Product</b> | Conditions                         | Yield        | Reference |
|-------|------------------------------------|------------------------------------|--------------|-----------|
| 11    |                                    | STAB-H<br>DCE<br>18 h              |              | 110       |
|       |                                    |                                    |              |           |
|       |                                    | 1. HC(OMe) <sub>3</sub>            |              |           |
| 12    | OCH3 CN                            | 16 h<br>2. STAB-H                  | 69%          | 111       |
|       | СН <sub>3</sub> 0                  | STAB-H                             |              |           |
| 13    | N*                                 | DCE                                | 100% (Crude) | 112       |
| 15    | F O H OCH3                         | 4A MS                              |              | 112       |
|       |                                    | 3 h                                |              |           |
|       | N-                                 | STAB-H                             |              |           |
| 14    |                                    | DCE                                | 41%          | 113       |
|       |                                    | rt                                 |              |           |
| 15    |                                    | STAB-H                             | 840%         | 114       |
| 1.5   |                                    | 20 min                             | UT R         |           |
| 16    |                                    | STAB-H<br>DCE<br>AcOH<br>overnight |              | 115       |
|       | O Ph                               | STAB-H                             |              |           |
| 17    | city states                        | DCM                                | 75%          | 116       |
|       |                                    | 3 h                                |              |           |
|       | OCH3                               | STAB-H                             |              |           |
| 18    | H H                                | DCE                                |              | 117       |
|       |                                    | AcOH                               |              |           |
| 19    |                                    | DCE                                |              | 117       |
|       |                                    | AcOH                               |              |           |
|       |                                    | STAB-H                             |              |           |
|       | , ÇF₃                              | TEA                                |              |           |
| 20    |                                    | DCE                                | 94%          | 118       |
|       |                                    | 18 h                               |              |           |

| Entry | <b>Reductive Amination Product</b>                | Conditions | Yield      | Reference |
|-------|---------------------------------------------------|------------|------------|-----------|
|       | R R                                               | STAB-H     |            |           |
| 21    | Br N*                                             | AcOH       | >90%       | 119       |
|       | $R = CH(CO_2 t-Bu)_2$                             | 45 min     |            |           |
|       | R C                                               |            |            |           |
| 22    | Br                                                | STAB-H     | >90%       | 119       |
|       | R = CH(CO <sub>2</sub> <i>t</i> -Bu) <sub>2</sub> | AcOH       |            |           |
|       | o B                                               |            |            |           |
|       | Br                                                | STAB-H     | 0.7.9      | 110       |
| 23    | H H                                               | AcOH       | >97%       | 119       |
|       | $R = CH(CO_2t - Bu)_2  V$                         |            |            |           |
|       | 0 Ph<br>                                          | STAB-H     |            |           |
| 24    |                                                   | THF        | 92%        | 120       |
|       | N C Boc                                           | AcOH       |            |           |
|       |                                                   | Overnight  |            |           |
|       | 0 Ph                                              | STAB-H     |            |           |
| 25    |                                                   | DCM        | R = H, 65% | 121       |
|       | N Boc                                             | 3 h        | R = Me,    |           |
|       |                                                   |            |            |           |
|       |                                                   | STAB-H     |            |           |
| 26    |                                                   | DCM        | 81%        | 122       |
|       |                                                   | 16 h       |            |           |
|       | С                                                 |            |            |           |
| 27    |                                                   | STAB-H     | 84%        | 122       |
| 21    |                                                   | DCM        |            |           |
|       |                                                   | STAB-H     |            |           |
| 28    |                                                   | DCE        |            | 123       |
|       | Ph                                                | 16 h       |            |           |
|       |                                                   | rt         |            |           |
|       |                                                   | STAB-H     |            |           |
| 29    | $\sim$                                            | DCE        |            | 123       |
|       |                                                   | 16 h       |            |           |
|       |                                                   |            |            |           |
|       | NHBoc<br><                                        | STAB-H     |            |           |
| 30    | BocN<br>NHBoc                                     | DCE        |            | 123       |
| 50    |                                                   | 16 h       |            | 120       |
|       | x = 0, s                                          |            |            |           |

| Entry | <b>Reductive Amination Product</b>                                                    | Conditions                                    | Yield                     | Reference |
|-------|---------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------|-----------|
| 31    | $HO_2C$ $HN$ $HO$ $HO_2C$ $HN$ $HO$ $HN$ $HO$ $HN$ $HN$ $HN$ $HN$ $HN$ $HN$ $HN$ $HN$ | STAB-H<br>DMF<br>24 h                         |                           | 124       |
| 32    | CH <sub>3</sub> O                                                                     | STAB-H<br>DCM<br>AcOH<br>3 d                  | 75%                       | 125       |
| 33    |                                                                                       | STAB-H<br>DCM<br>2 h                          | 82%                       | 126       |
| 34    | H<br>N<br>NH<br>NH                                                                    | STAB-H<br>DCM<br>2 h                          | 68%                       | 126       |
| 35    | F <sub>3</sub> C <sup>*</sup> N <sup>+</sup> P <sup>h</sup> <sub>Ph</sub>             | STAB-H<br>AcOH<br>overnight                   | 20%                       | 127       |
| 36    |                                                                                       | STAB-H<br>DCM<br>AcOH<br>18 h                 | 53%                       | 128       |
| 37    | X N N H<br>HN N Boc                                                                   | STAB-H<br>MeOH<br>AcOH<br>2 h                 | X = H, 80%<br>X = Cl, 20% | 129       |
| 38    |                                                                                       | STAB-H<br>DCM<br>18 h                         | 48%                       | 130       |
| 39    |                                                                                       | STAB-H<br>DCE<br>4 h                          | 16%                       | 131       |
| 40    |                                                                                       | STAB-H<br>Ti(OEt) <sub>4</sub><br>DCE<br>18 h | 21%                       | 131       |

| Entry | <b>Reductive Amination Product</b> | Conditions  | Yield        | Reference |
|-------|------------------------------------|-------------|--------------|-----------|
|       | ElO-C .                            | STAB-H      |              |           |
| 41    |                                    | THF         | 110          | 120       |
| 41    | → NH H                             | overnight   | 00%          | 132       |
|       |                                    |             |              |           |
|       |                                    |             |              |           |
|       | NHEt                               | STAB-H      |              |           |
| 42    | EtO <sub>2</sub> C                 | THF         | 44%          | 132       |
|       | HN/ N                              | 2 h         |              |           |
|       | 7                                  |             |              |           |
|       |                                    | STAB-H      |              |           |
| 43    |                                    | DCE         | 94%          | 37        |
|       | N.                                 | 1 h         |              |           |
|       | н                                  | STAB-H      |              |           |
|       |                                    | DCE         |              |           |
| 44    | → NH                               | AcOH        |              | 99        |
|       | Ph PPh2                            | rt          |              |           |
|       | //                                 | STAB-H      |              |           |
|       |                                    | DCE         |              |           |
| 45    | *`NH                               | AcOH        |              | 99        |
|       | SPh                                | Rt          |              |           |
|       |                                    | STAB-H      |              |           |
| 46    | NH                                 | DCE         |              | 99        |
|       | Ph                                 | AcOH        |              |           |
|       | SePh                               | Rt          |              |           |
|       | ~ ~ ~ ~                            | STAB-H      |              |           |
| 47    |                                    | DCE         | 47%          | 99        |
|       | S<br>Ph                            | AcOH        |              |           |
|       |                                    | rt          | 93% crude    |           |
|       | CCH <sub>3</sub><br>H              | STAB-H      | 32% as       |           |
| 48    |                                    | DCM         | (+)-mandlate | 133       |
|       | CF3                                | 2.5 h       | 4.1 ratio of |           |
|       | ~                                  |             | diast.       |           |
|       | /                                  | STAB-H      |              |           |
| 49    |                                    | DCE         | 86%          | 134       |
|       | Tm                                 | rt<br>24 h  |              |           |
|       | 0<br>                              | STAB-H      |              |           |
| 50    |                                    | THE ACOH    | 76%          | 135       |
|       |                                    | 1111, 10011 |              |           |

| Entry | Reductive Amination Product                   | Conditions                                | Yield                        | Reference |
|-------|-----------------------------------------------|-------------------------------------------|------------------------------|-----------|
| 51    | OH<br>HN<br>CO <sub>2</sub> CH <sub>3</sub>   | STAB-H<br>THF/DCE                         | 82%                          | 137       |
| 52    | HOUT OH HOUT NEt2<br>HOUT OH N OH NOT NEt2    | Glycan, AcOH,<br>60 °C<br>STAB-H<br>2.5 h |                              | 138       |
| 53    |                                               | STAB-H<br>DCM<br>rt<br>1.5 h              |                              | 102       |
| 54    | F<br>N<br>H<br>N<br>H                         | STAB-H<br>MeOH<br>0°C<br>rt<br>18 h       | >44%                         | 139       |
| 55    | C-HOAc                                        | STAB-H<br>DCE<br>AcOH<br>5h<br>25°C       | 85%<br>97:3<br>(trans : cis) | 140       |
| 56    | H CO <sub>2</sub> CH <sub>3</sub>             | STAB-H<br>DCE<br>rt<br>3h                 | 49%                          | 141       |
| 57    | AcO<br>AcO<br>OAc<br>HN<br>CO <sub>2</sub> Bn | STAB-H<br>THF<br>AcOH<br>pH 5<br>0 °C     | 85%                          | 142       |
| 58    |                                               | STAB-H<br>THF<br>16 h<br>rt               | 71%                          | 143       |

| Entry | <b>Reductive Amination Product</b>           | Conditions                                  | Yield  | Reference |
|-------|----------------------------------------------|---------------------------------------------|--------|-----------|
| 59    |                                              | STAB-H<br>AcOH<br>DCE                       | 74%    | 144       |
| 60    | Ph N Ph<br>H HN Boc                          | STAB-H<br>DCM<br>Overnight<br>rt            | 62%    | 145       |
| 61    | N* COONa *N<br>H COONa *N<br>H H H           | STAB-H<br>MeOH/DCM<br>Overnight<br>stepwise | 70%    | 146       |
| 62    | HN HN Cbz                                    | STAB-H<br>DCE<br>AcOH<br>rt<br>2.5 h        | 73%    | 147       |
| 63    |                                              | STAB-H<br>DCE<br>rt<br>8 h                  | 27%    | 148       |
| 64    | $0 \xrightarrow{f_{1}} (HN-(CH_{2})n-N)^{*}$ | STAB-H<br>DCE<br>AcOH<br>72 h               | 60-53% | 149       |
| 65    | Ph_O_H_N_CO <sub>2</sub> CH <sub>3</sub>     | STAB-H<br>DCE                               | 82%    | 150       |
| 66    |                                              | STAB-H<br>DCM<br>AcOH<br>24 h<br>rt         | 90%    | 151       |
| 67    |                                              | STAB-H<br>DCM<br>rt<br>24 h                 | 36%    | 151       |

| Entry | <b>Reductive Amination Product</b>                                                                   | Conditions                     | Yield           | Reference |
|-------|------------------------------------------------------------------------------------------------------|--------------------------------|-----------------|-----------|
|       |                                                                                                      | STAB-H                         |                 |           |
| 68    |                                                                                                      | DCE                            | 51%             | 103       |
|       |                                                                                                      | AcOH                           |                 |           |
|       |                                                                                                      | STAB-H                         |                 |           |
|       |                                                                                                      | DCE                            |                 |           |
| 69    |                                                                                                      | LiCl                           | 79%             | 104       |
|       | L Jn                                                                                                 | 25 °C                          |                 |           |
|       |                                                                                                      | 48 h                           |                 |           |
|       |                                                                                                      | STAB-H                         |                 |           |
| 70    |                                                                                                      | TiCl(OiPr) <sub>3</sub><br>DCM | 73%             | 152       |
|       |                                                                                                      | 16 h                           |                 |           |
|       |                                                                                                      | STAB-H                         |                 |           |
|       |                                                                                                      | MeOH                           |                 |           |
| 71    | NHBoc                                                                                                | 3A MS                          | 45%             | 153       |
|       | BocHN $(n = 1, 2, 3)$                                                                                | rt                             |                 |           |
|       |                                                                                                      | 1 h                            |                 |           |
|       | NO <sub>2</sub>                                                                                      | STAB-H                         |                 |           |
| 72    |                                                                                                      | МеОН                           |                 | 154       |
|       | CO <sub>2</sub> Et                                                                                   | R1 = alkyl                     |                 |           |
| 73    | Boc-N<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H | STAB-H<br>DCM                  | 56%             | 155       |
|       |                                                                                                      | STADU                          | $R = CH_2OH$    |           |
| 74    | N N                                                                                                  |                                | 95%             | 08        |
| /4    |                                                                                                      | DCE                            | $R = CH = CH_2$ | 20        |
|       | H R                                                                                                  | DEL                            | 82%             |           |
|       |                                                                                                      | STAB-H                         |                 |           |
|       |                                                                                                      | THF                            |                 |           |
| 75    |                                                                                                      | AcOH                           | 33%             | 156       |
|       |                                                                                                      | rt<br>20 h                     |                 |           |
|       | Mes                                                                                                  | STAB-H                         | 81%             |           |
| 76    |                                                                                                      | 22 °C                          | (after 2 more   | 157       |
|       | HOCF3                                                                                                | 2 h                            | steps)          |           |
|       |                                                                                                      | STAR-H                         |                 |           |
| 77    | CF3                                                                                                  | AcOH                           | 90%             | 158       |
|       |                                                                                                      |                                |                 |           |

| Entry | <b>Reductive Amination Product</b>                    | Conditions                  | Yield | Reference      |
|-------|-------------------------------------------------------|-----------------------------|-------|----------------|
| 78    | $R = -CH_2CH_2OCH_3$                                  | STAB-H<br>DCE<br>AcOH<br>rt | 63%   | 105            |
|       | $R_2 = \bigcup_{OAc} OAc$ $R_2HN^* \rightarrow NHR_2$ | overnight                   |       |                |
|       |                                                       | STAB-H                      |       |                |
|       |                                                       | DCE                         |       | 5 105<br>6 159 |
| 79    | R <sub>2</sub> HN * NHR <sub>2</sub>                  | АсОН                        | 78%   | 105            |
|       | $R = -CH_2CH_2OCH_3$                                  | rt                          |       |                |
|       |                                                       | overnight                   |       |                |
|       |                                                       |                             |       |                |
|       |                                                       | STAB-H                      |       |                |
| 80    | BU N                                                  | DCE                         | 69%   | 159            |
|       |                                                       | 18 h                        |       |                |
|       |                                                       |                             |       |                |
|       |                                                       | STAB-H                      |       |                |
| 81    | H <sub>3</sub> CO H                                   | CH <sub>3</sub> CN          | 85%   | 160            |
|       |                                                       | 1.5 h                       |       |                |
|       |                                                       |                             |       |                |
|       |                                                       | STAB-H                      |       |                |
| 82    | Br                                                    | МеОН                        | 95%   | 45             |
|       |                                                       | 3 h                         |       |                |
|       | \ \ H <sub>3</sub> CO                                 | STAB-H                      |       |                |
| 83    |                                                       | DCE                         |       | 161            |
|       | /→/→<br>H₃CO                                          | AcOH                        |       |                |
|       |                                                       | 3 h                         |       |                |
|       | LH3CO N                                               | STAB-H                      |       |                |
| 84    |                                                       |                             | 95%   | 162            |
|       |                                                       | 3 h                         |       |                |
|       |                                                       | 1                           |       |                |

| Entry | <b>Reductive Amination Product</b>  | Conditions | Yield   | Reference |
|-------|-------------------------------------|------------|---------|-----------|
|       | N N                                 | STAB-H     |         |           |
| 0.5   |                                     | DCE,       |         | 1 62 1 61 |
| 85    | Ň į                                 | 24 h       | 46%     | 163,164   |
|       |                                     | rt         |         |           |
|       | O2N N NO2                           | STAB-H     |         |           |
| 86    | \                                   | DCE        | 75-94%  | 165       |
|       | N $N $ $N $ $N $ $N $ $N $ $N $ $N$ | АсОН       |         |           |
|       | ^* ·                                | STAB-H     |         |           |
| 87    | N Ph                                | DCM        | 50%     | 166       |
|       |                                     | 7 h        |         |           |
|       |                                     | STAB-H     |         |           |
| 88    |                                     | DCM        | 29%     | 166       |
|       | ő                                   | 18 h       |         |           |
|       |                                     | STAB-H     |         |           |
| 89    |                                     | DCE        | 66%     | 166       |
|       | FII                                 | 2 h        |         |           |
|       | N CO <sub>2</sub> CH <sub>3</sub>   | STAB-H     |         |           |
|       | H <sub>3</sub> CO                   | DCM        |         |           |
| 90    | × N *                               | АсОН       | 35%     | 167,168   |
|       | Ph                                  | 24 h       |         |           |
|       |                                     | STAB-H     |         |           |
| 01    |                                     | DCE        | 15%     | 169       |
| 91    | CH <sub>3</sub> O Ph                | AcOH       | 4370    | 107       |
|       |                                     | 18 h       |         |           |
|       | F                                   | STAB-H     |         |           |
| 92    |                                     | DCM        | 74%     | 170       |
|       | Cbz <sup>-NH</sup>                  | 2h         |         |           |
|       |                                     | STAB-H     |         |           |
| 93    |                                     | DCM        | 100%    | 170       |
|       | Boc <sup>-NH</sup> F                | 24h        |         |           |
|       |                                     | STAB-H     |         |           |
| 04    |                                     | DCE        | 00 0501 | 171       |
| 94    | N-Bn                                | 0 °C to rt | 02-83%  | 1/1       |
|       |                                     | up to 2h   |         |           |
|       | 1                                   | 1          | 1       | 1         |

<sup>*a*</sup> Note: Newly formed C–N bonds are labeled by asterisks (\*); a blank entry for yield indicates no yield was given; STAB-H = sodium triacetoxyborohydride; DCE = 1,2-dichloroethane; DCM = dichloromethane; DMF =  $N_N$ -dimethylformamide; THF = tetrahydrofuran; AcOH = acetic acid; MS = molecular sieves; rt = room temperature.

and secondary amines. The example shown here (Table 4, entry 68) gave the amine product in 51% yield.<sup>103</sup>

An oligomeric compound, "carbonyl telechelic *cis*-1,4oligoisoprene," obtained by oxidative cleavage of high molecular weight polyisoprene, was subjected to reductive amination with *n*-butylamine using STAB-H as the reducing agent in DCE. The compound bearing an aldehyde on one end and a methyl ketone on the other was converted effectively to the diamine in an excellent yield (Table 4, entry 49; another example is listed in Table 13).

In one of the unusual applications, STAB-H was used in the reductive polycondensation of dialdehydes with diamines to produce a variety of polyamines under mild conditions.<sup>104</sup> Reaction times were typically 24-48 h to produce the polyamines in moderate yields (28-79%). The reactions were improved by the addition of LiCl. The authors speculated that LiCl is probably cleaving the H-bonding in intermediate hydroxyamines to facilitate the formation of the iminium ions.<sup>104</sup> The reactions were not improved by adding acetic acid, while heating to 70 °C or cooling to 5 °C decreased the yields. The highest yield was reported for the reductive polycondensations of isophthalaldehyde with mphenylenediamine (Table 4, entry 69), which provided the polymer product in good yield. In general, electron-rich aromatic dialdehydes such as 2,5-thiophene dicarbaldehyde and cyclic secondary amines such as 4,4'-trimethylenedipiperidine (see Table 5, entry 109) gave better results than electron-poor dialdehydes and acyclic secondary amines, respectively. Other reducing conditions such as a Ti(Oi-Pr)4/ NaBH<sub>4</sub>, Cl<sub>3</sub>SiH/DMF, and borane-pyridine complex were used but gave little or no polycondensation products.

The synthesis of chiral Ru-based metathesis catalysts included initial reductive amination of *N*-Boc-(methane-sulfonylamino)acetaldehyde with 2'-amino-6-trifluoromethyl-[1,1']binaphthalenyl-2-ol to give the product in high yield (Table 4, entry 76).

Another interesting application is the synthesis of a new class of amphiphilic calyx[4]arene-based ionophores via reductive amination with STAB-H as a key step.<sup>105</sup> To this end, two analogous tetraaldehydes were prepared and used in the reductive amination reactions to introduce four steroidal amine units simultaneously. The 1,3-*cone* calix[4]-arene scaffold (Table 4, entry 78) was obtained in 63% yield, while the 1,3-*alternate* calix[4]arene scaffold (Table 4, entry 79) was obtained in 78% yield. In total, five analogues were prepared and evaluated for their H<sup>+</sup> and Na<sup>+</sup> transporting properties.

In the reductive amination of aldehydes with primary amines, dialkylation of amines may occur as a side reaction. This side reaction is rarely a problem in most reported reactions. In the cases when dialkylation is detected, it is usually suppressed by the addition of a 5% or more molar excess of the primary amine. If the dialkylation of primary amines remains a problem, an alternative stepwise procedure is a possible solution for such a reaction. Most aldehydes form imines with primary amines relatively fast in solvents such as methanol, THF, and DCE.<sup>37</sup> It is recommended to carry out the imine formation in methanol since it is the preferred solvent for faster imine formation, and the resulting solution of the imine may be reduced directly with sodium borohydride to the amine. The faster the reduction, the less chance of formation of dialkylamines.<sup>106</sup>

Occasionally, however, the dialkylation of primary amines may be the desired outcome; in this case, the amine is used as the limiting reagent with two (or more) aldehyde equivalents. Representative examples of dialkylation of primary amines are listed in Table 4, entries 80-94. In some of these listings, the reaction of 1,5-dialdehydes with primary amines was used to form piperidine rings in good yields (Table 4, entries 87-94).

3.b: Reductive Amination of Aldehydes with Secondary Amines. The results from reductive amination of aldehydes with secondary amines vary considerably based on the structural features of the amines. Table 5 contains a large number of applications to illustrate the versatility of this class of reductive amination. The reaction time may be as short as 30 min or as long as 24 h. As the reaction becomes slower, it may suffer from some competing side reactions, namely, aldehyde reduction and the aforementioned N-acetylation and N-ethylation. Generally, the slower the reductive amination reaction, the larger the chance of aldehyde reduction. When compared to most other reducing agents, NaBH(OAc)<sub>3</sub> does not cause significant aldehyde reduction when used in reductive amination reactions. For example, the preparation of a thymidine dimer (Table 5, entry 10) via reductive amination shows that the use of NaBH-(OAc)<sub>3</sub> resulted in a higher yield of product and very little reduction of aldehyde and was superior to the use of NaBH3-CN which gave a lower yield and caused significant aldehyde reduction.<sup>172</sup>

- (106) For a discussion of these dialkylation side reactions involving γ- and δ-aminoesters with aldehydes and a mechanistic explanation, see reference 255.
- (107) Rosen, T. J.; Godek, D. M.; Gut, S.; Wint, L. U.S. Patent 97/5663349, 1997.
- (108) Rosen, T. J. U.S. Patent 97/5686615, 1997.
- (109) Smyser, T. E.; Confalone, P. N. U.S. Patent 96/5532356, 1996.
- (110) Davey, D.; Lee, W.; Lu, S.-F.; Phillips, G.; Wei, G. P.; Ye, B. U.S. Patent Application 05/0101644A1, 2005.
- (111) Baxter, A. D.; Boyd, E. A.; Frank-Kamenetsky, M.; Porter, J.; Price, S.; Rubin, L. L.; Stibbard, J. H. A. U.S. Patent Application 05/0070578A1, 2005.
- (112) Dinsmore, C. J.; Bergman, J. M. WO Patent Application 05/030792A2, 2005.
- (113) Sundermann, B.; Schick, H. WO Patent Application 04/043899A1, 2004.
- (114) Harris, C. S.; Hennequin, L. F. A.; Halsall, C. T.; Pease, J. E.; Smith, P. M. WO Patent Application 05/075439A1, 2005.
- (115) Fraley, M. E.; Hambaugh, S. R.; Rubino, R. S.; Hungate, R. W. WO Patent Application 04/052286A2, 2004.
- (116) McDonald, A.; Zhou, H.-J. WO Patent Application 04/024086A2, 2004.
- (117) Kelly, M. G.; Xu, S.; Xi, N.; Townsend, R.; Semin, D. J.; Ghiron, C.; Coutler, T. WO Patent Application 03/099814A1, 2003.
- (118) Andrews, M. D.; Brown, A. D.; Fradet, D. S.; Gordon, D. W.; Lansdell, M. I.; MacKenny, M. C. US Patent Application 05/0014789A1, 2005.
- (119) Lyssikatos, J. P.; Yang, B. V. US Patent 03/6586447B1, 2003.
- (120) Lombardo, L. J.; Bhide, R. S.; Kim, K. S.; Lu, S. WO Patent Application 03/099286A1, 2003.
- (121) Morgans, D. J. C. J.; Knight, S. D.; Newlander, K. A.; Dhanak, D.; Zhou, H.-J.; Adams, N. D. WO Patent Application 03/094839A2, 2003.

<sup>(103)</sup> Tang, Y.; Dong, Y.; Karle, J. M.; DiTusa, C. A.; Vennerstrom, J. L. J. Org. Chem. 2004, 69 (19), 6470.

<sup>(104)</sup> Sakano, T.; Kawai, Y.; Kanbara, T.; Hasegawa, K. Polym. J. (Tokyo) 1998, 30 (10), 857.

<sup>(105)</sup> Maulucci, N.; De Riccardis, F.; Botta, C. B.; Casapullo, A.; Cressina, E.; Fregonese, M.; Tecilla, P.; Izzo, I. Chem. Commun. 2005, (10), 1354.

| Entry | <b>Reductive Amination Product</b> | Conditions         | Yield | Reference |
|-------|------------------------------------|--------------------|-------|-----------|
|       | * .                                | STAB-H             |       |           |
| 1     |                                    | THF                | 63%   | 37        |
|       |                                    | 2 h                |       |           |
|       |                                    | STAB-H             |       |           |
| 2     |                                    | DCE                | 80%   | 37        |
|       |                                    | 1 h                |       |           |
|       |                                    | STAB-H             |       |           |
| 3     |                                    | DCE                | 84%   | 37        |
|       |                                    | 0.5 h              |       |           |
|       |                                    | STAB-H             |       |           |
|       |                                    | DCE                |       |           |
| 4     |                                    | АсОН               | 41%   | 37        |
|       |                                    | 3 h                |       |           |
|       |                                    | STAB-H             |       |           |
| 5     | × ×                                | DCE                | 74%   | 37        |
|       |                                    | 8 h                | 1470  | 57        |
|       |                                    |                    |       |           |
|       |                                    |                    |       |           |
|       |                                    | DCE                | 88%   |           |
|       |                                    | 2 h                |       |           |
|       |                                    | rt                 |       |           |
|       |                                    | STAB-H             |       |           |
| 6     |                                    | THF                | 65%   | 175       |
|       | 3 200                              | 2 h                |       |           |
|       |                                    | rt                 |       |           |
|       |                                    | STAB-H             |       |           |
|       |                                    | CH <sub>3</sub> CN | 79%   |           |
|       |                                    | 2 h                |       |           |
|       |                                    | rt                 |       |           |
|       | $\frown$                           | STAB-H             |       |           |
| 7     |                                    | DCE                | 91%   | 37        |
| ,     |                                    | АсОН               |       | 5.        |
|       |                                    | 1.5 h              |       |           |
|       |                                    | STAB-H             |       |           |
| 8     |                                    | DCE                | 96%   | 37        |
|       | $ O_2N' $                          | 1.5 h              |       |           |
|       |                                    | STAD II            |       |           |
| 0     |                                    |                    | 050   | 27        |
| 9     | $\langle N \rightarrow \rangle$    |                    | 95%   | 51        |
|       |                                    | 1.5 h              |       |           |

Table 5. Reductive amination of aldehydes with secondary amines<sup>a</sup>

| Entry | <b>Reductive Amination Product</b>       | Conditions                                                                                                                                                                  | Yield                                                       | Reference |
|-------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------|
| 10    |                                          | STAB-H<br>DCE                                                                                                                                                               | 85%                                                         | 172       |
| 11    | Ph-N_N <sup>*</sup>                      | STAB-H<br>DCE<br>1 h                                                                                                                                                        | 85%                                                         | 37        |
| 12    |                                          | STAB-H<br>DCE<br>3 h                                                                                                                                                        | 61%                                                         | 176       |
| 13    |                                          | STAB-H<br>DCE<br>3 h                                                                                                                                                        | 53%                                                         | 176       |
| 14    |                                          | STAB-H<br>NMP<br>or<br>Me-THF<br>rt                                                                                                                                         | 53% (from<br>bisulfite<br>adduct)<br>71% (from<br>aldehyde) | 177       |
| 15    |                                          | STAB-H<br>DCE<br>1 h                                                                                                                                                        | 74%                                                         | 178       |
| 16    | HO + N + HO + HO + HO + HO + HO + HO + H | <ol> <li>1. CH<sub>3</sub>COCH<sub>2</sub>COCH<sub>3</sub><br/>Pyridine/MeOH</li> <li>2. STAB-H<br/>DMF<br/>AcOH<br/>48 h</li> <li>3. TFA/H<sub>2</sub>O/dioxane</li> </ol> | 22%                                                         | 173       |
| 17    | Ph<br>O<br>N<br>Ph<br>Ph                 | STAB-H<br>THF/EtOH<br>AcOH<br>2 h                                                                                                                                           | 44%                                                         | 179       |
| 18    | Boc N Boc                                | STAB-H<br>THF                                                                                                                                                               | 85%                                                         | 174       |
| 19    | CO <sub>2</sub> CH <sub>3</sub>          | STAB-Н<br>АсОН                                                                                                                                                              | 79%                                                         | 180       |

| Entry | Reductive Amination Product      | Conditions                             | Yield                | Reference |
|-------|----------------------------------|----------------------------------------|----------------------|-----------|
| 20    | BnO,,, N<br>BnO<br>ÖBn OBn       | STAB-H<br>DCE                          | 59%                  | 181       |
| 21    | F<br>F<br>N<br>N<br>N<br>N<br>Ph | STAB-H<br>DCE<br>2 h                   | 68%                  | 182       |
| 22    | $Br \\ O \\ N \\ C_5H_{11}$      | STAB-H<br>DCM                          | 83%                  | 136       |
| 23    |                                  | STAB-H<br>DIPEA<br>DCE<br>16 h         |                      | 53        |
| 24    |                                  | STAB-H<br>DCE<br>rt<br>4 h             | 43%                  | 71        |
| 25    |                                  | STAB-H<br>DMAC<br>0 °C to -5 °C<br>2 h | 95%<br>(as HCl salt) | 47        |
| 26    |                                  | STAB-H<br>THF<br>overnight             | 69%                  | 183       |
| 27    |                                  | STAB-H<br>DCM<br>AcOH<br>18 h          |                      | 114       |
| 28    |                                  | STAB-H<br>DCM<br>18 h                  |                      | 114       |

| Entry | <b>Reductive Amination Product</b>  | Conditions                 | Yield      | Reference |
|-------|-------------------------------------|----------------------------|------------|-----------|
|       | N                                   | STAB-H                     |            |           |
| 29    |                                     | DCM                        | 80%        | 03        |
| 27    |                                     | $0^{\circ}C - 10^{\circ}C$ | 00 %       |           |
|       |                                     | 3 h                        |            |           |
|       | H <sub>2</sub> NOC OCH <sub>3</sub> | STAB-H                     |            |           |
| 30    | Ph N Ph                             | DCM                        | 63%        | 44,93     |
|       |                                     | 20 h                       |            |           |
|       | CN CN                               |                            |            |           |
|       |                                     | STAB-H                     | R = Ph 57% |           |
| 31    |                                     | DCE                        | R = furyl. | 32        |
|       |                                     | 3 d                        | 53%        |           |
|       | *                                   |                            |            |           |
|       | N N                                 |                            |            |           |
|       |                                     | STAB-H                     |            |           |
|       |                                     | DCE                        |            |           |
| 32    |                                     | AcOH                       | 28%        | 183       |
|       | он<br>Он                            | 24h                        |            |           |
|       |                                     |                            |            |           |
|       |                                     |                            |            |           |
|       |                                     | STAB-H                     |            |           |
| 33    |                                     | DCE                        | 90%        | 37        |
|       | N N                                 | 1.5 h                      |            |           |
|       | ~                                   |                            |            |           |
|       | RN                                  | STAB-H                     |            |           |
| 24    |                                     | DCM                        | (0.050)    | 104       |
| 54    |                                     | AcOH                       | 00-93%     | 184       |
|       | но-                                 | 16 h                       |            |           |
|       |                                     | STAB-H                     |            |           |
|       | OH J                                | DCE                        |            |           |
| 35    |                                     | Overnight                  |            | 185       |
|       |                                     | rt                         |            |           |
|       | ·/¯\^                               | STAB-H                     |            |           |
| 36    |                                     | DCE                        | 85%        | 186       |
|       | H H                                 | overnight                  |            |           |
|       |                                     | STAB-H                     |            |           |
| 37    |                                     | THF/DMF                    | 97%        | 187       |
| 51    |                                     | АсОН                       |            | 107       |
|       | F                                   | 16 h                       |            |           |

| Entry | Reductive Amination Product        | Conditions           | Yield | Reference |
|-------|------------------------------------|----------------------|-------|-----------|
|       | CO <sub>2</sub> CH <sub>3</sub> Ph | STAB-H               |       |           |
| 38    | Pn<br>N.*                          | DCM                  | 100%  | 188       |
| 50    | CI CI                              | AcOH                 | 100 % | 100       |
|       | CF3                                |                      |       |           |
|       | CO <sub>2</sub> CH <sub>3</sub>    | STAD U               |       |           |
| 30    |                                    | DCM                  | 65%   | 199       |
| 39    | CI                                 | AcOH                 | 05%   | 100       |
|       | CF3-                               | Асон                 |       |           |
|       |                                    | STAB-H               |       |           |
| 40    | N <sup>*</sup>                     | DCM                  | 000   | 100       |
| 40    |                                    | HC(OEt) <sub>3</sub> | 80%   | 189       |
|       |                                    | overnight            |       |           |
|       |                                    | STAB-H               |       |           |
| 41    | Boc                                | DCM                  | 640   | 100       |
| 41    | H H                                | HC(OEt) <sub>3</sub> | 64%   | 189       |
|       |                                    | overnight            |       |           |
|       | нн                                 | STAB-H               |       |           |
| 42    | ŇŢŇŢ                               | DCM                  |       | 190       |
| 42    |                                    | HC(OEt) <sub>3</sub> |       | 189       |
|       |                                    | overnight            |       |           |
|       | CF3                                | STAB-H               |       |           |
| 43    |                                    | DCE                  | 85.8% | 190       |
|       |                                    | 20h                  |       |           |
|       | $\langle \rangle$                  | STAB-H               |       |           |
| 14    |                                    | DCE                  | 00%   | 101       |
|       |                                    | AcOH                 | 2010  | 191       |
|       | F                                  | 30 min               |       |           |
|       | 0,50                               | 1. TFA/TCAA          |       |           |
|       |                                    | 2. STAB-H            |       |           |
| 45    | Ph                                 | DCE                  | 91%   | 192       |
|       |                                    | 2.5 h                |       |           |
|       | N NH                               | (TFA/TCAA act as     |       |           |
|       | Pon                                | water scavenger)     |       |           |
|       |                                    | STAB-H               |       |           |
| 46    |                                    | DCM                  | 65%   | 122       |
|       |                                    | overnight            |       |           |
|       |                                    |                      |       |           |

| Entry | <b>Reductive Amination Product</b> | Conditions | Yield | Reference |
|-------|------------------------------------|------------|-------|-----------|
|       | Boc                                | STAB-H     |       |           |
| 47    |                                    | THF        |       | 122       |
| 47    |                                    | AcOH       |       | 122       |
|       | н н                                | 46 h       |       |           |
|       | NC A                               | STAB-H     |       |           |
| 48    | N.                                 | THF        | 77%   | 46        |
|       | N Z N<br>H                         | 30 min     |       |           |
|       | NC                                 | STAB-H     |       |           |
| 49    |                                    | МеОН       | 55%   | 46        |
|       | H Ph                               | 30 min     |       |           |
|       |                                    |            |       |           |
|       |                                    | STAB-H     |       |           |
| 50    | CH CH                              | DCE        | 2907  | 102       |
| 50    |                                    | AcOH       | 28%   | 195       |
|       | HO-                                | 12 h       |       |           |
|       | 0                                  |            |       |           |
|       | 0                                  | STAB-H     |       |           |
| 51    |                                    | DCE        | 86%   | 194       |
|       | s lot                              | 15 h       |       |           |
|       | , P                                | STAB-H     |       |           |
| 52    |                                    | DCE        |       | 194       |
|       | s's                                | 15 h       |       |           |
|       | N                                  | STAB-H     |       |           |
| 53    | F                                  | DCE        |       | 195 196   |
| 55    |                                    | AcOH       |       | 195,196   |
|       |                                    | 4 h        |       |           |
|       | S OTBS                             | STAB-H     |       |           |
| 54    |                                    | THF        | 36%   | 197       |
|       |                                    | 16 h       |       |           |
|       | N                                  |            |       |           |
|       |                                    | STAB-H     |       |           |
|       |                                    | DCE        |       |           |
| 55    |                                    | AcOH       | 16%   | 198       |
|       |                                    | 1 h        |       |           |
|       |                                    |            |       |           |
|       |                                    | STAB-H     |       |           |
|       |                                    | DCE        | ECM   | 100       |
| 56    |                                    | АсОН       | 56%   | 199       |
|       | Ph                                 | 3 h        |       |           |

| Entry | <b>Reductive Amination Product</b>                                   | Conditions        | Yield               | Reference |
|-------|----------------------------------------------------------------------|-------------------|---------------------|-----------|
|       |                                                                      | STAB-H            |                     |           |
| 57    |                                                                      | DCE               |                     | 200       |
| 57    |                                                                      | AcOH              |                     | 200       |
|       | CF <sub>3</sub> O                                                    | 4 h               |                     |           |
|       | d                                                                    |                   |                     |           |
|       |                                                                      | STAB-H            |                     |           |
| 58    |                                                                      | DCE               | 86%                 | 71        |
|       |                                                                      | AcOH              |                     |           |
|       |                                                                      | 3 h               |                     |           |
|       | $HN \xrightarrow{t-Bu} Ph$                                           | STAB-H            |                     |           |
| 59    |                                                                      | DCE               |                     | 71        |
|       | Ph' N N                                                              | 3 h               |                     |           |
|       |                                                                      | STAB-H            |                     |           |
| 60    |                                                                      | DCM               | 24%                 | 201       |
|       |                                                                      | 13h               |                     |           |
|       |                                                                      | 1.0 11            |                     |           |
|       |                                                                      | STAB-H            |                     |           |
| 61    | s s                                                                  | DCM               |                     | 201       |
|       | Ň                                                                    | 2 h               |                     |           |
|       |                                                                      | STAB-H            |                     |           |
| 62    | H H                                                                  | DCM               | 60-95%              | 202       |
| 02    |                                                                      | AcOH              | Several<br>examples | 202       |
|       | ~* ~                                                                 | 16 h              |                     |           |
|       |                                                                      | STAB-H            | 50-90%              |           |
| 63    | HO V N                                                               | DCM               | Several             | 167,168   |
|       | N *[                                                                 | АсОН              | examples            |           |
|       | ~R'                                                                  | 24 h              |                     |           |
|       | N=N L                                                                |                   |                     |           |
|       | HN, N                                                                |                   |                     |           |
| 64    | CF <sub>3</sub> N <sup>*</sup>                                       | 5 n               |                     | 203       |
|       |                                                                      | or                |                     |           |
|       | F <sub>3</sub> C <sup>-</sup> <sup>C</sup> <sup>C</sup> <sup>F</sup> | dimethylacetamide |                     |           |
|       |                                                                      | 1 h               |                     |           |
|       |                                                                      | STAB-H            |                     |           |
| 65    |                                                                      | THF               | 56%                 | 204       |
|       | OCH3                                                                 | 6 h               |                     |           |
| 66    |                                                                      | STAB-H            | 57%                 | 205       |
|       | F <sub>3</sub> C <sup>M</sup> N <sup>N</sup> OCF <sub>3</sub>        | DCE<br>18 h       | 5110                | 200       |
|       |                                                                      | 10 11             | 1                   |           |

| Entry | <b>Reductive Amination Product</b>      | Conditions | Yield | Reference |
|-------|-----------------------------------------|------------|-------|-----------|
|       | 9                                       | STAB-H     |       |           |
| 67    | N CCH₃                                  | DCE        | 83%   | 205       |
|       | Ph                                      | 16 h       |       |           |
|       | 9 (Y)                                   | STAB-H     |       |           |
| 68    |                                         | DCE        | 68%   | 205       |
|       | Ph                                      | 16 h       |       |           |
|       |                                         | STAB-H     |       |           |
| 69    |                                         | DMF        |       | 206       |
|       | Ph <sub>3</sub> CS NHBoc                | 2.5 h      |       |           |
|       | N OH Ph OH                              | STAB-H     |       |           |
| 70    |                                         | DCE        | 88%   | 207       |
|       | H H                                     | 1.25 h     |       |           |
|       | $\sim$                                  | STAB-H     |       |           |
|       |                                         | DCE        |       | 200       |
| 71    |                                         | AcOH       |       | 208       |
|       | Ph                                      | 3 h        |       |           |
|       | Cl                                      | STAB-H     |       |           |
|       | S-N -NO2                                | DCE        |       |           |
| 72    |                                         | AcOH       | 71%   | 209       |
|       |                                         | overnight  |       |           |
|       |                                         | STAB-H     |       |           |
| 73    |                                         | DCE        | 93%   | 210       |
|       |                                         | 0.5 h      |       |           |
|       | CH30                                    | STAB-H     |       |           |
| 74    | N O                                     | DCE        | 100%  | 210       |
|       |                                         | 1 h        |       |           |
|       | CH-O                                    | STAB-H     |       |           |
| 75    |                                         | DCE        | 86%   | 210       |
|       |                                         | 1 h        |       |           |
|       |                                         | STAB-H     |       |           |
| 76    |                                         | DCE        | 80%   | 210       |
|       | 0 · · · · · · · · · · · · · · · · · · · | 1 h        |       |           |
|       |                                         | STAB-H     |       |           |
| 77    |                                         | DCE        | 52%   | 210       |
|       | <i>₩</i> .0. ~ ~ <i>*</i> ~             | 2 h        |       |           |
|       | CH30                                    | STAB-H     |       |           |
| 78    | N N                                     | DCE        | 47%   | 210       |
|       |                                         | l h        |       |           |
|       | Pn                                      |            |       |           |

| Entry | <b>Reductive Amination Product</b>                                                                                         | Conditions | Yield  | Reference |
|-------|----------------------------------------------------------------------------------------------------------------------------|------------|--------|-----------|
|       | O=S=O                                                                                                                      | STAB-H     |        |           |
| 79    |                                                                                                                            | DCE        | 95%    | 210       |
|       |                                                                                                                            | 1.5 h      |        |           |
|       | P                                                                                                                          | STAB-H     |        |           |
|       |                                                                                                                            | DCE        |        |           |
| 80    | сн30                                                                                                                       | AcOH       |        | 211       |
|       | R = H, CH <sub>3</sub>                                                                                                     | 16 h       |        |           |
|       | × N                                                                                                                        | STAB-H     |        |           |
| 81    | F C Ph                                                                                                                     | DCM        | 32%    | 212       |
|       | F ОН                                                                                                                       | 24 h       |        |           |
| 02    |                                                                                                                            | STAB-H     | 21.07  | 212       |
| 02    |                                                                                                                            | DCM        | 2170   | 213       |
|       |                                                                                                                            | STAB-H     |        |           |
| 83    |                                                                                                                            | DCM        | 51%    | 213       |
|       |                                                                                                                            | STAB-H     |        |           |
| 84    |                                                                                                                            | DCM        | 79%    | 213       |
|       | .0                                                                                                                         |            |        |           |
| 85    |                                                                                                                            | STAB-H     |        | 214       |
| 05    |                                                                                                                            | DCM        |        | 217       |
|       |                                                                                                                            | STAB-H     |        |           |
| 0.6   | $\downarrow$ $\bigcirc$ | DCM        |        | 215       |
| 80    |                                                                                                                            | 70 °C      |        | 215       |
|       | *                                                                                                                          | overnight  |        |           |
|       |                                                                                                                            | STAB-H     |        |           |
| 87    | NH NH                                                                                                                      | DCM        | 21-41% | 216       |
|       |                                                                                                                            | 18 h       |        |           |
|       | Boc-N                                                                                                                      | STAB-H     |        |           |
| 88    |                                                                                                                            | DCE        |        | 217       |
|       | CI                                                                                                                         | 18 h       |        |           |
|       | $\succ$                                                                                                                    | STAB-H     |        |           |
| 89    |                                                                                                                            | DCE        |        | 217       |
|       | Boc <sup>N</sup> (                                                                                                         | 18 h       |        |           |
|       | $\square$                                                                                                                  | STAB-H     |        |           |
| 90    |                                                                                                                            | DCE        |        | 217       |
|       |                                                                                                                            | 18 h       |        |           |

| Entry | <b>Reductive Amination Product</b>       | Conditions  | Yield  | Reference |
|-------|------------------------------------------|-------------|--------|-----------|
|       | $\sim$ H $\sim$ 0                        | STAB-H      |        |           |
| 01    |                                          | DCM/Toluene | 20/7   | 219       |
| 91    |                                          | AcOH        | 29%    | 218       |
|       | $\langle \rangle$                        | 18 h        |        |           |
|       | H                                        | STAB-H      |        |           |
| 92    |                                          | DCM         | 46%    | 218       |
|       | Ph' Ĥ                                    | 18 h        |        |           |
|       | N                                        | STAB-H      |        |           |
| 93    |                                          | DCM         | 68%    | 219       |
|       | NO NT                                    | overnight   |        |           |
|       |                                          | CTAD II     |        |           |
|       |                                          | зтав-п      |        | 220       |
| 94    | N N N N N N N N N N N N N N N N N N N    | AcOH        |        | 220       |
|       | Ń, Ń                                     | overnight   |        |           |
|       | o=s=o                                    |             |        |           |
|       | Ň                                        | STAB-H      |        |           |
| 95    |                                          | DCM         | 68%    | 221       |
|       | N O                                      | 2 h         |        |           |
|       | F N N                                    |             |        |           |
|       |                                          | STAB-H      |        |           |
|       |                                          | THF         |        |           |
| 96    | Bn <sub>2</sub> N,                       | AcOH        | 74%    | 222       |
|       | **<br>Bn <sub>2</sub> N NBn <sub>2</sub> | 3 h,        |        |           |
|       | -                                        | 10 °C       |        |           |
|       | H, H, Ph                                 | 240mg       |        |           |
| 97    |                                          | DCM         | 61%    | 223       |
|       |                                          | STABH 2eq   |        |           |
|       | ]                                        | 15 h        |        |           |
|       |                                          | STABH, DCM  |        |           |
| 98    |                                          | AcOH        | 99%    | 224       |
|       |                                          | rt          |        |           |
|       |                                          | 12-15 h     |        |           |
|       | Q.                                       | STAB-H      |        |           |
| 00    |                                          | DCE         | 10.700 | 225       |
| 99    |                                          | rt          | 10-70% | 223       |
|       |                                          | 2h          |        |           |
|       |                                          | STAB-H      |        |           |
|       |                                          | DCE         |        |           |
| 100   |                                          | AcOH        | 10-70% | 225       |
|       |                                          | rt          |        |           |
|       |                                          | 2 h         |        |           |

| Entry | <b>Reductive Amination Product</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Conditions        | Yield  | Reference |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|-----------|
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STAB-H            |        |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DCE               |        |           |
| 101   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AcOH              | 10-70% | 225       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rt                |        |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 h               |        |           |
|       | h <sub>ne</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STAB-H            |        |           |
| 102   | HŊ <sup>uv</sup> N <sub>*</sub> Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DCM               | 68%    | 226       |
|       | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AcOH              |        |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STAB-H            |        |           |
|       | <sup>44</sup> n,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PhMe              |        |           |
| 103   | HN <sup>ner</sup> N <sub>*</sub> Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 h               | 73%    | 226       |
|       | 0, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20-30 °C          |        |           |
|       | Boc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STAB-H            |        |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PhMe/THF          |        |           |
| 104   | × × ∽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23-27 °C          | 80%    | 227       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5 h             |        |           |
|       | Boc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.5 II            |        |           |
|       | Ph Bh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | STAB-H            |        |           |
| 105   | BocHN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DCE               | >49%   | 228       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MgSO <sub>4</sub> |        |           |
|       | /**NEt2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | STAB-H            |        |           |
| 106   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DCM               | 30%    | 229       |
|       | NH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rt                |        |           |
|       | IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18 h              |        |           |
|       | OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | STAB-H            |        |           |
| 107   | N O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DCE               | 82%    | 230       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AcOH              |        |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STAB-H Sn(OTf),   |        |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DCE               |        |           |
| 108   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 °C              | 66%    | 230       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |        |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STAB-H            |        |           |
|       | r .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DCE               |        |           |
| 109   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LiCl              | 65%    | 104       |
|       | , to so the solution of the so | 25 °C             |        |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48 h              |        |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STAB-H            |        |           |
| 110   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DCE               | 48%    | 148       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rt                |        |           |
|       | ОН Г <sup>-</sup> З <sub>2</sub> ОН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 h               |        |           |

| Entry | <b>Reductive Amination Product</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Conditions                                         | Yield  | Reference |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------|-----------|
| 111   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STAB-H<br>DCE<br>12 h                              | 86%    | 231       |
| 112   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STAB-H<br>DCE, DMF<br>Microwave<br>120 °C<br>6 min |        | 232       |
| 113   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STAB-H<br>DCE                                      |        | 233       |
| 114   | $\begin{array}{c} X = O, NH, CH_2 \\ \hline n & Y-Z \\ \hline 1, 2 & HC=CH \\ \hline 2 & CH_2CH(\alpha \cdot OH) \end{array} \end{array} \xrightarrow{V-Z} TMS$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STAB-H<br>ZnCl <sub>2</sub><br>DCM<br>0 °C         | 66-91% | 234       |
| 115   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STAB-H<br>DCM                                      | 90+%   | 235       |
| 116   | R<br>Ph<br>SO <sub>2</sub> Ph<br>SO <sub>2</sub> Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | STAB-H<br>DCM                                      |        | 236       |
| 117   | $ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $ | STAB-H,<br>DCE                                     | 72%    | 237       |
| 118   | Ph<br>SO <sub>2</sub> $N$ $N$ $N$ $N$ $N$<br>HN<br>R = H, OCH <sub>2</sub> CO <sub>2</sub> Et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | STAB-H<br>DCE                                      | 85%    | 238       |
| 119   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STAB-H<br>DCE                                      | 87%    | 239       |

<sup>*a*</sup> Note: Newly formed C–N bonds are labeled by asterisks (\*); a blank entry for yield indicates no yield was given; STAB-H = sodium triacetoxyborohydride; DCE = 1,2-dichloroethane; DCM = dichloromethane; DMAC = N,N-dimethylacetamide; NMP = N-methyl pyrrolidinone; AcOH = acetic acid; DMF = N,N-dimethylformamide; THF = tetrahydrofuran; Me-THE = 2-methyltetrahydrofuran; DIPEA = N,N-diisopropylethylamine; MS = molecular sieves; rt = room temperature.

As mentioned before, most aldehyde reductive aminations do not require the use of acid activation. All aldehydes are reactive, and their only limitations to undergo reductive amination reactions arise primarily from the use of unreactive or sterically hindered amines. The absence of acids minimizes the chance of aldehyde reduction in some slow reactions. For example, the reductive amination of cyclohexane carboxaldehyde with the sterically hindered diisopropylamine in the presence of AcOH forms N,N-diisopropylcyclohexy-Imethylamine in only 41% yield accompanied by about 25% aldehyde reduction. In the absence of AcOH, the reaction is slower but the isolated yield is higher and only 5% aldehyde reduction is observed (Table 5, entries 4 and 5). A better result was obtained from the reductive amination of 1,1',2'tris-nor-squalene aldehyde with diisopropylamine (Table 5, entry 33) which needed 15 h to be completed with no acid added but gave the product in 90% isolated yield and no aldehyde reduction. This is a much improved result as compared to standard Borch reduction with cyanoborohydride giving only 4% of product in the absence of acetic acid and 45% in its presence.100,101

- (122) Bridger, G.; Skerlj, R.; Kaller, A.; Harwig, C.; Bogucki, D.; Wilson, T. R.; Crawford, J.; McEachern, E. J.; Atsman, B.; Nan, S.; Zhou, Y.; Schols, D.; Smith, C. D.; Di Fluri, R. M. WO Patent Application 02/034745A1, 2002.
- (123) Drysdale, M. J.; Starkey, I. D.; Swarbrick, T. M.; Potter, A. J.; Bower, J. F. WO Patent Application 01/055111A1, 2001.
- (124) Hill, J.; Parr, I.; Morytko, M.; Siedlecki, J.; Yu, X. Y.; Silverman, J.; Keith, D.; Finn, J.; Christensen, D.; Lazarova, T.; Watson, A. D.; Zhang, Y. WO Patent Application 01/044274A1, 2001.
- (125) Donaldson, K. H.; Shearer, B. G.; Uehling, D. E. WO Patent Application 01/42217A1, 2001.
- (126) Creswell, M. W.; Higginbottom, M.; Horwell, D. C.; Lewthwaite, R. A.; Pritchard, M. C.; Raphy, J. WO Patent Application 00/037462A1, 2000.
- (127) Lowe, J. A., III; Rosen, T. J. U.S. Patent 98/5773450, 1998.
- (128) Naylor, A.; Evans, B. WO Patent Application 95/006645A1, 1995.(129) Kim, K. S. WO Patent Application 05/077920A1, 2005.
- (12) Rin, R. B. WO Fateri Application 05/07/2004, 2003.
   (130) Eickhoff, J. E.; Hafenbradl, D.; Schwab, W.; Cotton, M.; Klebl, B. M.; Zech, B.; Müller, S.; Harris, J.; Savic, V.; Macritchie, J.; Sherborne, B.; Le, J. WO Patent Application 06/010637A2, 2006.
- (131) Verdonck, M. G. C.; Angibaud, P. R.; Roux, B.; Pilatte, I. N. C.; Ten Holte, P.; Arts, J.; Van Emelen, K. WO Patent Application 06/010750A1, 2006.
- (132) Lin, J.; Wrobleski, S. T.; Liu, C.; Leftheris, K. WO Patent Application 06/017054A2, 2006.
- (133) Caron, S.; Vazquez, E. U.S. Patent Application 03/0236268A1, 2003.
- (134) Kébir, N.; Morandi, G.; Campistron, I.; Laguerre, A.; Pilard, J.-F. Polymer 2005, 46 (18), 6844.
- (135) Sagara, Y.; Mitsuya, M.; Uchiyama, M.; Ogino, Y.; Kimura, T.; Ohtake, N.; Mase, T. *Chem. Pharm. Bull.* **2005**, *53* (4), 437.
- (136) Boss, C.; Weller, T.; Grisostomi, C.; Corminboef, O. WO Patent Application 05/058822A1, 2005.
- (137) Sattlegger, M.; Buschmann, H.; Przewosny, M.; Englberger, W.; Koegel, B.-Y.; Schick, H. U.S. Patent Application 04/0225003A1, 2004.
- (138) Dalpathado, D. S.; Jiang, H.; Kater, M. A.; Desaire, H. Anal. Bioanal. Chem. 2005, 381 (6), 1130.
- (139) Takami, A.; Iwakubo, M.; Okada, Y.; Kawata, T.; Odai, H.; Takahashi, N.; Shindo, K.; Kimura, K.; Tagami, Y.; Miyake, M.; Fukushima, K.; Inagaki, M.; Amano, M.; Kaibuchi, K.; Iijima, H. *Bioorg. Med. Chem.* **2004**, *12* (9), 2115.
- (140) Chehade, K. A. H.; Andres, D. A.; Morimoto, H.; Spielmann, H. P. J. Org. Chem. 2000, 65 (10), 3027.
- (141) Henry, K. J., Jr.; Wasicak, J.; Tasker, A. S.; Cohen, J.; Ewing, P.; Mitten, M.; Larsen, J. J.; Kalvin, D. M.; Swenson, R.; Ng, S.-C.; Saeed, B.; Cherian, S.; Sham, H.; Rosenberg, S. H. *J. Med. Chem.* **1999**, *42* (23), 4844.
- (142) Arya, P.; Dion, S.; Shimizu, G. K. H. Bioorg. Med. Chem. Lett. 1997, 7 (12), 1537.
- (143) Dvorak, C. A.; Apodaca, R.; Barbier, A. J.; Berridge, C. W.; Wilson, S. J.; Boggs, J. D.; Xiao, W.; Lovenberg, T. W.; Carruthers, N. I. *J. Med. Chem.* **2005**, *48* (6), 2229.

The reductive aminations of aromatic aldehydes with ethyl 2-carboxypiperidine (Table 5, entries 8 and 9) using STAB-H under the standard conditions<sup>37</sup> are high yielding reactions that show no aldehyde reduction. The results were superior to those obtained by other literature procedures.<sup>21</sup>

We have found DCE to be the preferred solvent for most reactions. A similar finding was observed in the reductive amination of 4-(2-thienyl)-1*H*-pyrrole-2-carbaldehyde with morpholine in which the highest yield was obtained in DCE (Table 5, entry 6).

The synthesis of the compound listed in Table 5, entry 16 features a one-pot procedure for the reductive amination of a secondary amine in the presence of a primary amine.<sup>173</sup> The primary amine is protected, *in situ*, with pentane-2,4-

- (144) Curtin, M. L.; Florjancic, A. S.; Cohen, J.; Gu, W.-Z.; Frost, D. J.; Muchmore, S. W.; Sham, H. L. *Bioorg. Med. Chem. Lett.* **2003**, *13* (7), 1367.
- (145) Gooding, O. W.; Lindberg, T.; Miller, W.; Munyak, E.; Vo, L. Org. Process Res. Dev. 2001, 5 (3), 283.
- (146) Farrell, J. R.; Stiles, D.; Bu, W.; Lippard, S. J. Tetrahedron 2003, 59 (14), 2463.
- (147) Harre, M.; Nickisch, K.; Schulz, C.; Weinmann, H. Tetrahedron Lett. 1998, 39 (17), 2555.
- (148) Song, H.-C.; Chen, Y.-W.; Song, J.-G.; Savage, P. B.; Xue, G.-P.; Chiara, J. A.; Krakowiak, K. E.; Izatt, R. M.; Bradshaw, J. S. J. Heterocycl. Chem. 2001, 38 (6), 1369.
- (149) Shawakfeh, K. Q.; Al-Ajlouni, A. M.; Ibdah, A. Acta Chim. Slov. 2002, 49, (4), 805.
- (150) Remiszewski, S. W.; Sambucetti, L. C.; Bair, K. W.; Bontempo, J.; Cesarz, D.; Chandramouli, N.; Chen, R.; Cheung, M.; Cornell-Kennon, S.; Dean, K.; Diamantidis, G.; France, D.; Green, M. A.; Howell, K. L.; Kashi, R.; Kwon, P.; Lassota, P.; Martin, M. S.; Mou, Y.; Perez, L. B.; Sharma, S.; Smith, T.; Sorensen, E.; Taplin, F.; Trogani, N.; Versace, R.; Walker, H.; Weltchek-Engler, S.; Wood, A.; Wu, A.; Atadja, P. J. Med. Chem. 2003, 46 (21), 4609.
- (151) Winkler, J. D.; Asselin, S. M.; Shepard, S.; Yuan, J. Org. Lett. 2004, 6 (21), 3821.
- (152) Gutierrez, C. D.; Bavetsias, V.; McDonald, E. Tetrahedron Lett. 2005, 46 (20), 3595.
- (153) Hah, J.-M.; Roman, L. J.; Martásek, P.; Silverman, R. B. J. Med. Chem. 2001, 44 (16), 2667.
- (154) Hoshina, Y.; Ikegami, S.; Okuyama, A.; Fukui, H.; Inoguchi, K.; Maruyama, T.; Fujimoto, K.; Matsumura, Y.; Aoyama, A.; Harada, T.; Tanaka, H.; Nakamura, T. *Bioorg. Med. Chem. Lett.* **2005**, *15* (1), 217.
- (155) Kim, H.-S.; Choi, B.-S.; Kwon, K.-C.; Lee, S.-O.; Kwak, H. J.; Lee, C. H. Bioorg. Med. Chem. 2000, 8 (8), 2059.
- (156) Sato, H.; Sakoh, H.; Hashihayata, T.; Imamura, H.; Ohtake, N.; Shimizu, A.; Sugimoto, Y.; Sakuraba, S.; Bamba-Nagano, R.; Yamada, K.; Hashizume, T.; Morishima, H. *Bioorg. Med. Chem.* **2002**, *10* (5), 1595.
- (157) Van Veldhuizen, J. J.; Gillingham, D. G.; Garber, S. B.; Kataoka, O.; Hoveyda, A. H. J. Am. Chem. Soc. 2003, 125 (41), 12502.
- (158) Wang, X.; Chen, Y.; Crockett, R.; Briones, J.; Yan, T.; Orihuela, C.; Zhi, B.; Ng, J. *Tetrahedron Lett.* **2004**, *45* (45), 8355.
- (159) Assens, J.-L.; Bernhart, C.; Cabanel-Haudricourt, F.; Gautier, P.; Nisato, D. U.S. Patent Application 03/0225100A1, 2003.
- (160) Myers, A.; Plowright, A. T.; Kung, D. W.; Lanman, B.; Barbay, J.; Xing, C. WO Patent Application 02/040477A2, 2002.
- (161) Hodgetts, K. J.; Doller, D. WO Patent Application 02/006242A2, 2002.(162) Yoon, T.; Delombaert, S.; Hodgetts, K.; Doller, D. WO Patent Application
- 01/068614A2, 2001.
- (163) Fujihara, T.; Saito, M.; Nagasawa, A. Acta Crystallogr., Sect. E: Struct. Rep. Online 2004, E60 (2), o262.
- (164) Fujihara, T.; Saito, M.; Nagasawa, A. Acta Crystallogr., Sect. E: Struct. Rep. Online 2004, E60, 01126.
- (165) Yang, L.-X.; Hofer, K. G. Tetrahedron Lett. 1996, 37 (34), 6081.
- (166) Allen, M. P.; Coe, J. W.; Liras, S.; O'Donnell, C. J.; O'Neill, B. T. U.S. Patent Application 05/0020830A1, 2005.
- (167) Liras, S.; McHardy, S. F. EP Patent Application 00/1038872A1, 2000.
- (168) Liras, S.; McHardy, S. F. U.S. Patent 02/6444679B1, 2002.
- (169) Coe, J. W. WO Patent Application 99/055680A1, 1999
- (170) Batt, D. G.; Wacker, D. A.; Delucca, G. V. WO Patent Application 05/ 080376A1, 2005.
- (171) Brooks, P. R.; Caron, S.; Coe, J. W.; Ng, K. K.; Singer, R. A.; Vazquez, E.; Vetelino, M. G.; Watson, H. H., Jr.; Whritenour, D. C.; Wirtz, M. C. *Synthesis* **2004**, (11), 1755.

dione in pyridine/methanol. The secondary amine was reductively alkylated with 12-(4-morpholinyl)dodecanal using STAB-H in DMF/AcOH followed by removal of the protective group with aqueous TFA to recover the primary amine and give the product in a modest 22% yield.

The reductive amination of Boc-indole-5-carboxaldehyde with Boc-piperazine using STAB-H gives aminoalkyl indole intermediate (Table 5, entry 18). The indole derivative was utilized in the synthesis of potentially useful compounds that treat cancer and other diseases by inhibiting, regulating and/ or modulating tyrosine kinase signal transduction.<sup>174</sup> This reductive amination reaction was scaled up effectively at 25-27 °C to about a 14 mol scale to produce about 5 kg of the indole derivative in 85% yield.

A selective reductive amination of a ketoaldehyde resulted in the exclusive reaction with the aldehyde in the presence of the ketone (Table 5, entry 24). Thus the reductive amination of  $(\pm)$ -*trans*-4-oxo-2-phenylcyclopentanecarbaldehyde with 4-[(*N*-allyl-*N*-(4-nitrobenzyloxycarbonyl))amino]piperidine gave the product in 43% yield.

The final step in the convergent synthesis of a substance P antagonist (Table 5, entry 25) was a reductive amination using STAB-H in *N*,*N*-dimethylacetamide (DMAC) as a solvent. The reaction was carried out on a 4.4 mol scale to give the product in 95% isolated yield. The use of DMAC was superior to that of DMF which caused formylation of the secondary amine as a side reaction.<sup>47</sup>

**3.c:** Reductive Amination of Formaldehyde: *N*-Methylation of Amines. The *N*-methylation of amines can be carried out using formaldehyde under the standard conditions for reductive amination (Table 6). Either paraformaldehyde or formalin may be used as a source of formaldehyde. This reaction, however, is not selective with primary amines; it gives only the *N*,*N*-dimethyl derivatives (Table 6, entry 1) in good yields. The reaction is ideal for methylation of secondary amines as there is only a possibility of monomethylation. Since water reacts with STAB-H, paraformaldehyde has an advantage of being anhydrous and may be used as a source of formaldehyde as in the *N*-methylation of 3-(3cyanophenyl)piperidine to give the product in 89% isolated yield (Table 6, entry 2).

Formalin was also used in reductive amination reactions mostly on a small scale (10–20 mmol) with excess sodium triacetoxyborohydride. For example, *N*-methylation of 1-phenylpiperazine with formalin and STAB-H in DCE gives nearly a quantitative yield of the 4-methyl-1-phenylpiperazine (Table 6, entry 3). Other reported reactions show a diversity of structures in which formalin was used in the *N*-methylation of several amines (Table 6, entries 4–10). The restriction on the scale results from the decomposition of the triacetoxyborohydride reagent by water. We typically used about 5 equiv of the hydride reagent in the reaction, which may appear impractical in larger scale reactions. Apparently, this was not a restriction in at least one case mentioned earlier in which the reaction was carried out successfully on a 4 mol scale (see Table 2, entry 8).

**4. Reductive Amination of Keto Acids/Keto Esters.** The study of the reductive amination of keto esters and keto acids is a subject of special interest. The relative position of the two functional groups may effect the outcome of the reaction chemically or stereochemically or may result in a secondary reaction.

**4.a:**  $\alpha$ - and  $\beta$ -Keto Acids/Esters. The reductive amination of  $\alpha$ -keto esters with primary and secondary amines gives the corresponding N-substituted  $\alpha$ -aminoesters. The reductive amination of various a-keto esters with benzylamine (Table 7, entries 1-3) proceeds in good to excellent vields to afford the  $\alpha$ -benzylamino esters.<sup>37</sup> Reactions involving other amines, such as aniline or morpholine, are not as efficient and are accompanied by variable amounts of ketone reductions. The electron-withdrawing effect of the  $\alpha$ -esters activates the ketones towards nucleophilic additions compared to those with corresponding alkyl or aryl groups. This effect explains the relative reactivity of methyl benzoylformate (Table 7, entry 3) compared to acetophenone, which is very unreactive in most reductive aminations. However, this activation makes these ketones prone to reduction by sodium triacetoxyborohydride, which becomes a competing process in slow reductive amination reactions of this class of ketones. An alternative method for the preparation of these N-substituted  $\alpha$ -aminoesters is the reductive amination of aldehydes or simple ketones with  $\alpha$ -aminoesters. Several examples representing the reductive amination of ketones and aldehydes with amino esters are listed in Table 7 (entries 6-13). These reactions are faster and produce the corresponding N-substituted amino esters in high yields. In the examples listed in Table 7, entries 7-10, the methyl esters of leucine, proline, threonine, and phenylalanine were reductively alkylated with 4-azidobutanal and STAB-H in DCE in good yields. These results were much improved over those obtained using NaBH<sub>3</sub>CN or via alkylation with alkyl halides. A novel one pot procedure was developed to reduce S-ethyl thioesters to aldehydes with Et<sub>3</sub>-SiH in the presence of Pd-C followed by subsequent reductive amination with amino esters using STAB-H. The compound listed in Table 7, entry 12 was prepared using this sequence in 93% yield.

The reductive amination of  $\beta$ -keto esters is a very unique reaction that warrants further investigation. We studied many of these reactions particularly the reactions of  $\alpha$ -substituted- $\beta$ -keto esters.<sup>48</sup> The reductive amination of these substrates exhibits apparent control of the stereochemistry at both the  $\alpha$ - and  $\beta$ -positions. By monitoring these reactions and isolating the initial reaction intermediates, we see structural evidence of formation of enamines rather than imines as intermediates. As the reduction proceeds, it usually favors formation of one major diastereomer. The effect is most pronounced in reductive amination of cyclic  $\beta$ -keto esters such as methyl cyclohexanone-2-carboxylate, which gives almost exclusively the *cis*-product with benzylamine (Table

<sup>(172)</sup> Caulfield, T. J.; Prasad, C. V. C.; Prouty, C. P.; Saha, A. K.; Sardaro, M. P.; Schairer, W. C.; Yawman, A.; Upson, D. A.; Kruse, L. I. *Bioorg. Med. Chem. Lett.* **1993**, *3* (12), 2771.

<sup>(173)</sup> Lin, Y.-I.; Li, Z.; Francisco, G. D.; McDonald, L. A. U.S. Patent 04/ 6727232B2, 2004.

<sup>(174)</sup> Payack, J. U.S. Patent Application 02/0198252A1, 2002.

Table 6. Use of formaldehyde in reductive amination<sup>a</sup>

| Entry | Reductive Amination Product                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Conditions                                    | Yield | Reference |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------|-----------|
| 1     | * CH <sub>3</sub><br>-(CH <sub>2</sub> ) <sub>4</sub> -N<br>* CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STAB-H<br>DCE<br>1 h                          | 90%   | 37        |
| 2     | NC<br>H<br>NC<br>CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | STAB-H<br>DCE<br>1 h                          | 89%   | 240       |
| 3     | Ph-N_N*CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | STAB-H<br>DCE<br>I h                          | 95%   | 37        |
| 4     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STAB-H<br>CH <sub>3</sub> CN<br>2 h           | 85%   | 241       |
| 5     | CH3-N<br>CH3-N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STAB-H<br>CH <sub>3</sub> CN/THF<br>overnight |       | 242       |
| 6     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STAB-H<br>THE<br>AcOH<br>overnight            | 13%   | 243       |
| 7     | HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STAB-H<br>DCE<br>AcOH<br>1 h                  | 96%   | 198       |
| 8     | F <sub>3</sub> C CF <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | STAB-H<br>DCE                                 | 75%   | 244       |
| 9     | CF <sub>3</sub><br>CH <sub>3</sub> <sup>+</sup> N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STABH<br>DCE                                  | 77%   | 245       |
| 10    | $\begin{array}{c} CH_3 \\ CH_3 \\ HO \\ H$ | STAB-H<br>CH <sub>3</sub> CN                  | 94%   | 246       |

<sup>*a*</sup> Note: Newly formed C–N bonds are labeled by asterisks (\*); a blank entry for yield indicates no yield was given; STAB-H = sodium triacetoxyborohydride; DCE = 1,2-dichloroethane; THF = tetrahydrofuran; AcOH = acetic acid.

| Table 7. | Reductive | amination | of | α- | and | β-keto | acids/keto | esters <sup>a</sup> |
|----------|-----------|-----------|----|----|-----|--------|------------|---------------------|
|----------|-----------|-----------|----|----|-----|--------|------------|---------------------|

| Entry | <b>Reductive Amination Product</b>                            | Conditions | Yield  | Reference |
|-------|---------------------------------------------------------------|------------|--------|-----------|
|       | 0                                                             | STAB-H     |        |           |
| 1     | CH3 CH3                                                       | DCE        | 90%    | 37,250    |
|       | NHCH <sub>2</sub> Ph                                          | 30 min     |        |           |
|       | l Q                                                           | STAB-H     |        |           |
| 2     | + OCH3                                                        | DCE        | 82%    | 37        |
|       | NHCH <sub>2</sub> Ph                                          | 16 h       |        |           |
|       | Q                                                             | STAB-H     |        |           |
| 3     | Ph OCH <sub>3</sub>                                           | DCE        | 58%    | 37        |
|       | NHCH <sub>2</sub> Ph                                          | 54 h       |        |           |
|       | ^                                                             | STAB-H     |        |           |
| 4     |                                                               | THF        | 9501   |           |
| 4     |                                                               | AcOH       | 0.5 10 | 247,248   |
|       |                                                               | 24 h       |        |           |
|       | I                                                             | STAB-H     |        |           |
| 5     | Ph NH                                                         | THF        | 85%    |           |
| 5     | CO <sub>2</sub> CH <sub>3</sub>                               | AcOH       | 0570   | 48        |
|       | $\sim$                                                        | 24 h       |        |           |
|       |                                                               | STAB-H     |        |           |
| 6     | L H O<br>L * N L                                              | DCE        | 88%    |           |
| 0     | Y SOCH3                                                       | AcOH       | 00 //  | 37        |
|       |                                                               | 4 h        |        |           |
|       | 0                                                             | STAB-H     |        |           |
| 7     |                                                               | DCE        | 83%    | 251       |
|       | <sup>1</sup> H⊼,N <sub>3</sub>                                | AcOH       |        |           |
|       | 0                                                             | STAB-H     |        |           |
| 8     | OCH3                                                          | DCE        | 69%    | 251       |
|       | Ń, N <sub>3</sub>                                             | AcOH       |        | 251       |
|       |                                                               | STAB-H     |        |           |
| 9     | но" Ссна                                                      | DCE        | 75%    | 251       |
| ,     | HN, N <sub>3</sub>                                            | AcOH       | 1510   | 231       |
|       |                                                               |            |        |           |
| 10    | $\sim$ $\sim$ $\stackrel{\circ}{\downarrow}$                  | STAB-H     |        |           |
| 10    |                                                               | DCE        | /6%    | 251       |
|       |                                                               | AcOH       |        |           |
|       | 0                                                             | STAB-H     |        |           |
| 11    |                                                               | DCM        | 96%    | 252       |
|       | $ \begin{array}{c} &   & R_2 = Ar \\ & HN_* R_2 \end{array} $ | rt         |        | 252       |
|       |                                                               | overnight  |        |           |

| Entry | Reductive Amination Product                               | Conditions              | Yield | Reference |
|-------|-----------------------------------------------------------|-------------------------|-------|-----------|
| 12    | HN = 9-fluorenemethyl                                     | STAB-H<br>DMF<br>30 min | 93%   | 253       |
| 13    | EtO <sub>2</sub> C<br>CO <sub>2</sub> Et<br>NH<br>*<br>Ph | STAB-H<br>DCM           |       | 254       |



**Scheme 3.** Reductive amination of  $\gamma$ - and  $\delta$ -keto esters



7, entry 4).<sup>247,248</sup> Furthermore, the reductive amination of the same  $\beta$ -keto ester with (*R*)- $\alpha$ -methyl benzylamine produces a major enantiomer with a *cis* stereochemistry at the cyclohexane ring (Table 7, entry 5).<sup>48</sup> A similar finding was reported using NaBH<sub>4</sub> with different carboxylic acids.<sup>249</sup> We see a similar trend with acyclic  $\beta$ -keto esters. A more detailed study will be reported on this class of compounds shortly.

- (175) Davis, R. A.; Carroll, A. R.; Quinn, R. J. Aust. J. Chem. 2002, 55 (12), 789.
- (176) Clark, J. D.; Davis, J. M.; Favor, D.; Fay, L. K.; Franklin, L.; Henegar, K. E.; Johnson, D. S.; Nichelson, B. J.; Ou, L.; Repine, J. T.; Walters, M. A.; White, A. D.; Zhu, Z. U.S. Patent Application 05/0043309A1, 2005.
- (177) Coe, J. W.; Mchardy, S. F.; Ragan, J. A.; Tickner, D. L.; Vanderplas, B. C. WO Patent Application 05/037790A1, 2005.
- (178) Miller, R.; Lang, F.; Song, Z. J.; Zewge, D. WO Patent Application 04/ 035538A1, 2004.
- (179) Cumming, J.; Tucker, H. WO Patent Application 03/042177A1, 2003.
- (180) Godek, D. M.; Murtiashaw, C. W.; Urban, F. J.; Vanderplas, B. C. U.S. Patent 95/5455350, 1995.
- (181) Hirth, B. H.; Rennie, G. WO Patent Application 05/063706A1, 2005.
- (182) Stupple, P. A. WO Patent Application 05/033107A1, 2005.
- (183) Luckhurst, C.; Mochel, T.; Perry, M.; Springthorpe, B.; Stein, L. WO Patent Application 04/099144A1, 2004.
- (184) Liras, S. WO Patent Application 04/092165A1, 2004.
- (185) Lennon, P. J.; Bonafoux, D. F.; Wolfson, S. G. WO Patent Application 04/091607A1, 2004.
- (186) Busch-Petersen, J.; Laine, D. I.; Palovich, M. R.; Mccleland, B. W. WO Patent Application 04/091482A2, 2004.
- (187) Benson, A. G.; Fraher, T. P.; Hepperle, M. E.; Jerome, K. D.; Naing, W.; Selness, S. R.; Walker, J. K. WO Patent Application 03/104223A1, 2003.
- (188) Thompson, S. K.; Frazee, J. S.; Kallander, L. S.; Ma, C.; Marino, J. P.; Neeb, M. J.; Bhat, A. WO Patent Application 03/082192A2, 2003.
- (189) Watson, R. J.; Meissner, J. W. G.; Christie, M. I.; Owen, D. A. WO Patent Application 03/070242A1, 2003.
- (190) Galambos, J.; Nógrádi, K.; Ágainé, C. E.; Keserú, G. M.; Vágó, I.; Domány, G.; Kiss, B.; Gyertyán, I.; Laszlovszky, I.; Laszy, J. WO Patent Application 03/029233A1, 2003.
- (191) Ding, C. Z.; Hamann, L. G.; Stein, P. D.; Pudzianowski, A. T. WO Patent Application 03/106628A2, 2003.
- (192) Gao, Z.; Chen, C.-K. WO Patent Application 02/085819A2, 2002.
- (193) Lippard, S. J.; Burdette, S.; Hilderbrand, S.; Tsien, R.; Walkup, G. WO Patent Application 02/004562A2, 2002.
- (194) Dvorak, C. A.; Fisher, L. E.; Green, K. L.; Harris, R. N., III; Maag, H.; Prince, A.; Repke, D. B.; Stabler, R. S. WO Patent Application 01/090081A1, 2001.

• Vol. 10, No. 5, 2006 / Organic Process Research & Development

**4.b:** The Reductive Amination of  $\gamma$ - and  $\delta$ -Keto Esters. The reductive amination of  $\gamma$ - and  $\delta$ -keto esters or acids with primary amines is another special case.<sup>255</sup> The initial products, *N*-substituted  $\gamma$ - or  $\delta$ -amino esters or acids, cyclize to the corresponding lactams (such as **12** and **13**, Scheme 3) under the reaction conditions. This tandem two-step procedure which we termed "reductive lactamization" is a convenient method for the synthesis of *N*-substituted  $\gamma$ -butyro- and  $\delta$ -valerolactams under mild conditions. Examples of these reactions are listed in Table 8. The reductive amination of ethyl levulinate and ethyl-5-oxohexanoate with

- (195) Dinsmore, C. J.; Bergman, J. M. WO Patent Application 01/060458A2, 2001.
- (196) Dinsmore, C. J.; Bergman, J. M. WO Patent Application 01/060369A1, 2001.
- (197) Teobald, B. J. WO Patent Application 01/019826A2, 2001.
- (198) Wu, Y.-J.; Su, W.-G. U.S. Patent 01/6262030B1, 2001.
- (199) Aquila, B. M.; Cuny, G. D.; Hauske, J. R.; Shao, L.; Wu, X. WO Patent Application 01/068604A2, 2001.
- (200) Tata, J. R.; Chapman, K. T.; Duffy, J. L.; Kevin, N. J.; Cheng, Y.; Rano, T. A.; Zhang, F.; Huening, T.; Kirk, B. A.; Lu, Z.; Raghavan, S.; Fleitz, F. J.; Petrillo, D. E.; Armstrong, J. D. I.; Varsolona, R. J.; Askin, D.; Hoerrner, R. S.; Purick, R. WO Patent Application 01/038332A1, 2001.
- (201) Hertel, L. W.; Xu, Y.-C. WO Patent Application 00/000196A1, 2000.
- (202) Liras, S. EP Patent 03/1055655B1, 2001.
- (203) Cai, D.; Journet, M.; Kowal, J.; Larsen, R. D. U.S. Patent 00/6051717, 2000.
- (204) MacKenzie, A. R.; Wood, A.; Bass, R. J. WO Patent Application 97/ 030994A1, 1999.
- (205) Stemp, G.; Johns, A. WO Patent Application 97/043262A1, 1997.
- (206) Doll, R. J.; Mallams, A. K.; Afonso, A.; Rane, D. F.; Rossman, R. R.;
- Njoroge, F. G. WO Patent Application 96/031477A1, 1996.
- (207) Askin, D.; Cianciosi, S. J.; Hoerrner, R. S. U.S. Patent 96/5508404, 1996.
- (208) Ashwell, M. A. WO Patent Application 94/008983A1, 1994.
- (209) Urban, F. J. U.S. Patent 94/5359068, 1994.
- (210) Kosley, R. W.; Palermo, M. G.; Shimshock, S. J.; Wolf, V. WO Patent Application 99/016746A1, 1999.
- (211) Steenstra, C. K.; Yoon, T.; Peterson, J. M. WO Patent Application 05/ 077903A2, 2005.
- (212) Calabrese, A. A.; Fradet, D. S.; Hepworth, D.; Lansdell, M. WO Patent Application 05/077935A1, 2005.
- (213) Brickmann, K.; Egner, B. J.; Giordanetto, F.; Inghardt, T.; Linusson Jonsson, A.; Pontén, F. WO Patent Application 05/090330A1, 2005.

#### **Table 8.** Reductive amination of $\gamma$ - and $\delta$ -keto acids/keto esters<sup>a</sup>

| Entry | <b>Reductive Amination Product</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Conditions        | Yield  | Reference |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|-----------|
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | STAB-H            |        |           |
| 1     | H <sub>3</sub> C + N + O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DCE               | 0.4.07 |           |
| I     | Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.5 h             | 84%    | 255       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45 °C             |        |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | STAB-H            |        |           |
| 2     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DCE               | 900    | 255       |
| 2     | $H_3C + N + O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22 h              | 0070   | 233       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45 °C             |        |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | STAB-H            |        |           |
| 2     | °.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DCE               | 0107   | 255       |
| 3     | N<br>* Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | АсОН              | 91%    | 235       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48 h, rt          |        |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | STAB-H            |        |           |
| 4     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DCE               | 700    | 255       |
| 4     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AcOH              | 10%    | 235       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48 h, rt          |        |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | STAB-H            |        |           |
|       | CI Ph<br>CI OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CHCI <sub>3</sub> | 92%    | 256       |
| 5     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AcOH              |        |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4A MS             |        |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24 h, rt          |        |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | STAB-H            |        |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CHCl <sub>3</sub> |        |           |
| 6     | N-V-V-V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AcOH              | 79%    | 256       |
|       | CI OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4A MS             |        |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24 h, rt          |        |           |
|       | Ph<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |        |           |
|       | Ph <sup>N</sup> Ph <sub>Ph</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STAB-H            |        |           |
| 7     | $\begin{bmatrix} Ph & CO_2CH_3 \\ CO_2CH_3 \\ Ph & CO_2CH_3 \\ \hline \\ Ph & CO_2CH_3 \\$ | THF               |        |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | АсОН              | 62%    | 257       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -78°C to rt       |        |           |
|       | $\begin{bmatrix} & H \\ & H \end{bmatrix} \xrightarrow{CO_2 C \Pi_3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22 h              |        |           |
|       | ii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |        |           |

<sup>*a*</sup> Note: Newly formed C–N bonds are labeled by asterisks (\*); STAB-H = sodium triacetoxyborohydride; DCE = 1,2-dichloroethane; THF = tetrahydrofuran; AcOH = acetic acid; MS = molecular sieves; rt = room temperature.

benzylamine gave 1-benzyl-5-methyl-pyrrolidin-2-one (Table 8, entry 1) and 1-benzyl-6-methyl-piperidin-2-one (Table 8, entry 2), respectively, in very good yields. The cyclization was accelerated by warming the reaction to 40-45 °C. The reductive amination of *o*-carboxybenzaldehyde with 4-ami-

nobutyrate gives an intermediate that may cyclize to two different products; only a single product was obtained from cyclization with the carboxy group (Table 8, entry 4). Similar results were obtained from the reductive amination of mucochloric acid with different primary amines (Table 7, Scheme 4. Reductive amination of aldehydes and ketones with amino acids/esters



**Table 9.** Reductive amination of  $\gamma$ - and  $\delta$ -amino acids/amino esters<sup>a</sup>

| Entry | <b>Reductive Amination Product</b> | Conditions  | Yield |
|-------|------------------------------------|-------------|-------|
|       |                                    | STAB-H      |       |
| 1     |                                    | DCE         | 07%   |
| 1     |                                    | 45 h        | 92.10 |
|       |                                    | rt          |       |
|       |                                    | STAB-H      |       |
| 2     |                                    | DCE         | 85%   |
| 2     |                                    | rt, 4 h     | 0570  |
|       |                                    | 55 °C, 24 h |       |
|       |                                    | STAB-H      |       |
| 2     |                                    | DCE         | 06%   |
| 5     |                                    | 90 h        | 90%   |
|       |                                    | rt          |       |
|       |                                    | STAB-H      |       |
| 4     |                                    | THF         | 50%   |
| 4     |                                    | 75 h        | 30%   |
|       |                                    | rt          |       |
|       |                                    | STAB-H      |       |
| 5     |                                    | THF         | 55%   |
| 5     |                                    | rt, 24 h;   | 5570  |
|       |                                    | 55°C, 10 h  |       |
|       | 0                                  | STAB-H      |       |
| 6     |                                    | DCE         | 91%   |
|       |                                    | 100 h       | 2170  |
|       |                                    | rt          |       |

<sup>*a*</sup> Note: Newly formed C–N bonds are labeled by asterisks (\*); STAB-H = sodium triacetoxyborohydride; DCE = 1,2-dichloroethane; THF = tetrahydrofuran; AcOH = acetic acid; rt = room temperature. All the examples in this table from reference 255.

entries 5 and 6). The example in Table 8, entry 7, features the reduction of dimethyl 3,3-dimethyl-2-(diphenylmethylidenamino)-cyclopropane-1,1-dicarboxylate (i) with STAB-H (and other hydride reagents). The reaction gives the  $\gamma$ -lactam iii in 62% yield together with 38% of unreacted starting material. A possible explanation for the formation of iii is the initial formation of the ring opened aminoester ii which cyclizes under the reaction conditions to form product iii.

The same products may alternatively be obtained from reductive alkylation of  $\gamma$ - or  $\delta$ -amino acids or esters with ketones and aldehydes (Scheme 4). As in the above case, the initial reductive amination products cyclize to the

corresponding lactams under the reaction conditions.<sup>255</sup> Some representative examples are listed in Table 9. In either case, these reactions are limited to formation of  $\gamma$ -butyrolactams and  $\delta$ -valerolactams. When applied to  $\epsilon$ -amino esters or larger homologues, these reactions result only in reductive amination and no lactam formation.

**5.** Compounds Containing Ketals and Acetals. The standard reaction conditions of reductive amination with STAB-H are sufficiently mild to tolerate the presence of acid sensitive functionalities such as acetals and ketals on either reactant. With the use of AcOH or no acid, the products are stable to aqueous workup conditions and are isolated in high

yields. For example, the reductive amination of cyclohexanedione monoethylene ketal with a variety of primary and secondary amines affords very good isolated yields of the corresponding amines and provides a means for further elaboration of the reductive amination products. Several structurally diverse examples are listed in Table 10. The products may be isolated either as free amines or as the corresponding salts including salts of strong acids provided that the salt formation is carried out under anhydrous conditions to avoid acid hydrolysis of the acetals or ketals.

- (214) Heightman, T. D.; Wilson, D. M. WO Patent Application 05/097778A1, 2005.
- (215) Hutchison, A. J.; Chenard, B. L.; Luke, G. P.; Li, G.; Ghosh, M.; Peterson, J. M.; Tarrant, J. G.; Doller, D. WO Patent Application 05/110989A1, 2005.
- (216) Allerton, C. M. N.; Hepworth, D.; Miller, D. C. WO Patent Application 05/116027A2, 2005.
- (217) Harris, J. R.; Clark, B. P.; Gallagher, P. T.; Whatton, M. A. WO Patent Application 05/118531A1, 2005.
- (218) Lee, E. K.; Melville, C. R.; Rotstein, D. M. WO Patent Application 05/ 121145A2, 2005.
- (219) Björe, A.; Gran, U.; Strandlund, G. WO Patent Application 05/123747A1, 2005.
- (220) Howard, H. R., Jr.; Wlodecki, B. WO Patent Application 06/000914A1, 2006.
- (221) Tucker, H. WO Patent Application 06/001751A1, 2006.
- (222) Dubber, M.; Lindhorst, T. K. Carbohydr. Res. 1998, 310 (1-2), 35.
- (223) Maffeo, D.; Williams, J. A. G. Inorg. Chim. Acta 2003, 355, 127.
- (224) Yoo, K. H.; Choi, H. S.; Kim, D. C.; Shin, K. J.; Kim, D. J.; Song, Y. S.; Jin, C. Arch. Pharm. Pharm. Med. Chem. 2003, 336 (4–5), 208.
- (225) Zaveri, N. T.; Jiang, F.; Olsen, C. M.; Deschamps, J. R.; Parrish, D.; Polgar, W.; Toll, L. J. Med. Chem. 2004, 47 (12), 2973.
- (226) Cai, W.; Colony, J. L.; Frost, H.; Hudspeth, J. P.; Kendall, P. M.; Krishnan, A. M.; Makowski, T.; Mazur, D. J.; Phillips, J.; Ripin, D. H. B.; Ruggeri, S. G.; Stearns, J. F.; White, T. D. *Org. Process Res. Dev.* **2005**, *9* (1), 51.
- (227) Payack, J. F.; Vazquez, E.; Matty, L.; Kress, M. H.; McNamara, J. J. Org. Chem. 2005, 70 (1), 175.
- (228) Van Rompaey, K.; Van den Eynde, I.; De Kimpe, N.; Tourwé, D. Tetrahedron 2003, 59 (24), 4421.
- (229) Delarue, S.; Girault, S.; Ali, F. D.; Maes, L.; Grellier, P.; Sergheraert, C. Chem. Pharm. Bull. 2001, 49 (8), 933.
- (230) Hosokawa, S.; Kobayashi, S. J. Synth. Org. Chem. Jpn. 2001, 59 (11), 1103.
- (231) Su, N.; Bradshaw, J. S.; Zhang, X. X.; Savage, P. B.; Krakowiak, K. E.; Izatt, R. M. J. Heterocycl. Chem. 1999, 36 (3), 771.
- (232) Coats, S. J.; Schulz, M. J.; Carson, J. R.; Codd, E. E.; Hlasta, D. J.; Pitis, P. M.; Stone, D. J., Jr.; Zhang, S.-P.; Colburn, R. W.; Dax, S. L. *Bioorg. Med. Chem. Lett.* **2004**, *14* (22), 5493.
- (233) Dorn, C. P.; Finke, P. E.; Oates, B.; Budhu, R. J.; Mills, S. G.; MacCoss, M.; Malkowitz, L.; Springer, M. S.; Daugherty, B. L.; Gould, S. L.; DeMartino, J. A.; Siciliano, S. J.; Carella, A.; Carver, G.; Holmes, K.; Danzeisen, R.; Hazuda, D.; Kessler, J.; Lineberger, J.; Miller, M.; Schleif, W. A.; Emini, E. A. *Bioorg. Med. Chem. Lett.* **2001**, *11* (2), 259.
- (234) Nagai, K.; Shiomi, K.; Sunazuka, T.; Harder, A.; Turberg, A.; Omura, S. Bioorg. Med. Chem. Lett. 2004, 14 (16), 4135.
- (235) Naya, A.; Kobayashi, K.; Ishikawa, M.; Ohwaki, K.; Saeki, T.; Noguchi, K.; Ohtake, N. *Bioorg. Med. Chem. Lett.* **2001**, *11* (9), 1219.
- (236) Shankaran, K.; Donnelly, K. L.; Shah, S. K.; Caldwell, C. G.; Chen, P.; Finke, P. E.; Oates, B.; MacCoss, M.; Mills, S. G.; DeMartino, J. A.; Gould, S. L.; Malkowitz, L.; Siciliano, S. J.; Springer, M. S.; Kwei, G.; Carella, A.; Carver, G.; Danzeisen, R.; Hazuda, D.; Holmes, K.; Kessler, J.; Lineberger, J.; Miller, M. D.; Emini, E. A.; Schleif, W. A. *Bioorg. Med. Chem. Lett.* **2004**, *14* (13), 3589.
- (237) Watkins, S. E.; Yang, X.; Craig, D. C.; Colbran, S. B. J. Chem. Soc., Dalton Trans. 1999, (10), 1539.
- (238) Xue, G.; Bradshaw, J. S.; Dalley, N. K.; Savage, P. B.; Izatt, R. M.; Prodi, L.; Montalti, M.; Zaccheroni, N. *Tetrahedron* **2002**, *58*, (24), 4809.
- (239) Yang, Z.; Bradshaw, J. S.; Zhang, X. X.; Savage, P. B.; Krakowiak, K. E.; Dalley, N. K.; Su, N.; Bronson, R. T.; Izatt, R. M. J. Org. Chem. **1999**, 64 (9), 3162.
- (240) Sonesson, C.; Lin, C.-H.; Hansson, L.; Waters, N.; Svensson, K.; Carlsson, A.; Smith, M. W.; Wikström, H. J. Med. Chem. **1994**, *37* (17), 2735.
- (241) Alvaro, G.; Arista, L.; Cardullo, F.; D'Adamo, L.; Feriani, A.; Giovannini, R.; Seri, C. WO Patent Application 04/099143A1, 2004.
- (242) Yao, W.; Zhou, J.; Xu, M.; Zhang, F.; Metcalf, B. WO Patent Application 04/096139A2, 2004.
- (243) Lowe, J. A. I.; Sanner, M. A. WO Patent Application 04/110994A1, 2004.

6. Reductive Amination of Aldehydes and Ketones with Weakly Basic Amines. What we describe as weakly basic amines are mostly aromatic amines that are both weak bases and poor nucleophiles. The  $pK_a$  values for represented amines range from 3.98 for p-chloroaniline to -4.26 for 2,4dinitroaniline (measured for the protonated amines).<sup>269,270</sup> The reductive amination of aldehydes and ketones with these amines is usually sluggish. As a consequence, aldehydes and ketones may be reduced preferentially with most reducing agents. Perhaps, the results that best demonstrate the superior advantage of using NaBH(OAc)<sub>3</sub> over other reagents are those obtained from reactions with weakly basic amines. Representative examples are listed in Table 11. The use of sodium triacetoxyborohydride in the reductive amination of ketones with several of the monosubstituted anilines in stoichiometric quantities or in the presence of excess ketone gives the corresponding reductive amination products in very good isolated yields (Table 11, entries 1-8). However, the efficiency of these reactions decreases considerably with less basic amines such as o-nitroaniline, 2,6dibromoaniline, and 2,4,6-trichloroaniline which react slowly or result in no reaction (Table 11, entry 9; see also Table 15, entries 8 and 9).

The reductive amination of aldehydes with weakly basic amines is faster and has a wider scope than that of ketones.

- (244) Dirat, O.; Elliott, J. M.; Kulagowski, J. J.; Owen, S. N.; Raubo, P. A.; Shaw, D. E.; Williams, B. J. WO Patent Application 04/009573A1, 2004.
- (245) Gao, M.; Mock, B. H.; Hutchins, G. D.; Zheng, Q.-H. Nucl. Med. Biol. 2005, 32 (5), 543.
- (246) Myers, A. G.; Kung, D. W. J. Am. Chem. Soc. 1999, 121 (46), 10828.
- (247) Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A. Presented at the The 33rd ACS National Organic Symposium, Montana State University, Bozeman, MO, June 1993; Abstract A4.
- (248) Vanderplas, B.; Murtiashaw, C. W.; Sinay, T.; Urban, F. J. Org. Prep. Proced. Int. 1992, 24, 685.
- (249) Xu, D.; Prasad, K.; Repič, O.; Blacklock, T. J. Tetrahedron: Asymmetry 1997, 8 (9), 1445.
- (250) Crouch, R. D.; Holden, M. S.; Weaver, T. M. Chem. Educ. 1998, 3 (3).
- (251) Ramanjulu, J. M.; Joullié, M. M. Synth. Commun. 1996, 26 (7), 1379.
- (252) Sim, M. M.; Ganesan, A. J. Org. Chem. 1997, 62 (10), 3230.
- (253) Han, Y.; Chorev, M. J. Org. Chem. 1999, 64 (6), 1972.
- (254) Chenard, B. L. U.S. Patent 00/6124361, 2000.
- (255) Abdel-Magid, A. F.; Harris, B. D.; Maryanoff, C. A. Synlett **1994**, (1), 81.
- (256) Zhang, J.; Blazecka, P. G.; Davidson, J. G. Org. Lett. 2003, 5 (4), 553.
- (257) Mangelinckx, S.; De Kimpe, N. Synlett 2005, (10), 1521.
- (258) Quirante, J.; Escolano, C.; Bosch, J.; Bonjoch, J. J. Chem. Soc., Chem. Commun. 1995, 2141.
- (259) Kakefuda, A.; Watanabe, T.; Takahashi, T.; Sakamoto, S.; Tsukamoto, S.-I. Synth. Commun. 2001, 31 (3), 401.
- (260) Duhamel, P.; Deyine, A.; Dujardin, G.; Ple, G.; Poirier, J.-M. J. Chem. Soc., Perkin Trans. 1 1995, 17, 2103.
- (261) Jensen, M. S.; Palucki, M.; Rivera, N. R.; Wells, K. M.; Xiao, Y.; Wang, Y.; Yang, C.; Yasuda, N. WO Patent Application 01/034602A2, 2001.
- (262) Trabocchi, A.; Menchi, G.; Rolla, M.; Machetti, F.; Bucelli, I.; Guarna, A. *Tetrahedron* **2003**, *59* (28), 5251.
- (263) France, R. R.; Cumpstey, I.; Butters, T. D.; Fairbanks, A. J.; Wormald, M. R. *Tetrahedron: Asymmetry* **2000**, *11* (24), 4985.
- (264) Lu, Y.; Just, G. Tetrahedron 2001, 57 (9), 1677.
- (265) Demopoulos, V. J.; Gavalas, A.; Rekatas, G.; Tani, E. J. Heterocycl. Chem. 1995, 32 (4), 1145.
- (266) Cai, D.; Desmond, R.; Shi, Y.-J.; Tschaen, D. M.; Verhoeven, T. R. U.S. Patent 96/5484923, 1996.
- (267) Tschaen, D. M.; Abramson, L.; Cai, D.; Desmond, R.; Dolling, U.-H.; Frey, L.; Karady, S.; Shi, Y.-J.; Verhoeven, T. R. J. Org. Chem. 1995, 60 (14), 4324.
- (268) Chen, H.-H.; Namil, A. WO Patent Application 99/032445A1, 1999.
- (269) Albert, A.; Serjeant, E. P. *Ionization constants of acids and bases; A laboratory manual.*, 2nd ed.; Chapman and Hall: London, 1971; p 91.
- (270) Yates, K.; Wai, H. J. Am. Chem. Soc. 1964, 86 (24), 5408.

Table 10. Reductive amination of substrates containing ketals and acetals<sup>a</sup>

| Entry | <b>Reductive Amination Product</b>                       | Conditions    | Yield                           | Reference |  |
|-------|----------------------------------------------------------|---------------|---------------------------------|-----------|--|
|       |                                                          | STAB-H        |                                 |           |  |
| 1     | C NHBn                                                   | DCE           |                                 |           |  |
|       |                                                          | АсОН          | 98%                             | 37        |  |
|       |                                                          | 20 min        |                                 |           |  |
|       |                                                          | STAB-H        |                                 |           |  |
|       | $r^{\circ}$                                              | DCE           |                                 |           |  |
| 2     |                                                          | АсОН          | 98%                             | 37        |  |
|       |                                                          | 25 min        |                                 |           |  |
|       |                                                          | STAB-H        |                                 |           |  |
| 3     |                                                          | THF           | 87%                             | 258       |  |
|       | V N<br>H                                                 | overnight     |                                 |           |  |
|       |                                                          | STAB-H        |                                 |           |  |
|       |                                                          | DCE           |                                 |           |  |
| 4     |                                                          | AcOH          | 99%                             | 37        |  |
|       |                                                          | 4 h           |                                 |           |  |
|       |                                                          | STAB-H        |                                 |           |  |
|       |                                                          | THF           |                                 |           |  |
| 5     |                                                          | АсОН          | 98%                             | 259       |  |
|       |                                                          | 1 h           |                                 |           |  |
|       | HN Ph                                                    | STAB-H        | 75%                             |           |  |
| 6     | ↓<br>↓<br>O<br>O/-Pr                                     | DCE           | mixture of                      | 260       |  |
|       |                                                          | 20 h          | diastereomers                   |           |  |
|       | OCH <sub>3</sub>                                         | STAB-H        |                                 |           |  |
| 7     |                                                          | THF           | 92%                             | 261       |  |
|       | CH <sub>3</sub> O, *N <sup>VV</sup> CO <sub>2</sub> t-Bu | 10°C          |                                 |           |  |
|       | CH₃Ô ⊓                                                   | 30 min        |                                 |           |  |
|       | $\times$                                                 |               |                                 |           |  |
| 8     |                                                          |               | 60%                             | 262       |  |
|       | HO                                                       | n<br>avamiaht |                                 |           |  |
|       |                                                          | STAB-H        |                                 |           |  |
|       |                                                          | THF           |                                 |           |  |
| 9     |                                                          | rt            | 41%                             | 262       |  |
|       |                                                          | 16 h          |                                 |           |  |
|       | 0<br>                                                    |               |                                 |           |  |
| 10    | H <sub>2</sub> N                                         | STAB-H        |                                 |           |  |
|       | HN ×                                                     | DCE           | $\mathbf{R} = \Lambda c^2 800/$ | 263       |  |
|       |                                                          | rt            | R = Bn: 87%                     |           |  |
|       |                                                          | 4 h           |                                 |           |  |
|       |                                                          |               |                                 |           |  |

| Entry | <b>Reductive Amination Product</b> | Conditions    | Yield | Reference |
|-------|------------------------------------|---------------|-------|-----------|
|       |                                    | <b>STAB-H</b> |       |           |
| 11    |                                    | DCE           | 95%   |           |
|       |                                    | rt            | 3570  | 264       |
|       |                                    | overnight     |       |           |
|       |                                    | STAB-H        |       |           |
| 12    |                                    | DCE           | 85%   | 37        |
| 12    |                                    | АсОН          | 00 %  |           |
|       |                                    | 75 min        |       |           |
|       |                                    | STAB-H        |       |           |
| 13    | C N−Ph                             | DCE           | 78%   | 37        |
| 15    |                                    | АсОН          | 10%   |           |
|       |                                    | 4 h           |       |           |
|       |                                    | STAB-H        |       | 265       |
| 14    |                                    | DCE           | quant |           |
|       |                                    | АсОН          |       |           |
|       |                                    | STAB-H        |       | 266,267   |
|       |                                    | THF           |       |           |
| 15    |                                    | АсОН          | 88%   |           |
|       |                                    | 45°C          |       |           |
|       |                                    | 16 h          |       |           |
|       |                                    | STAB-H        |       |           |
| 16    |                                    | DCM/AcOH      | 47%   | 268       |
|       | 5 <u> </u>                         | overnight     |       |           |
|       | 1                                  | STAB-H        |       |           |
|       |                                    | DCE           |       |           |
| 17    |                                    | rt            | 74%   | 244       |
|       | Ó, Ý, CH₃                          | 40 h          |       |           |
|       | F <sub>3</sub> C CF <sub>3</sub>   |               |       |           |

<sup>*a*</sup> Note: Newly formed C–N bonds are labeled by asterisks (\*); STAB-H = sodium triacetoxyborohydride; DCE = 1,2-dichloroethane; DCM = dichloromethane; THF = tetrahydrofuran; AcOH = acetic acid; rt = room temperature.

Most reactions with monosubstituted anilines are carried out under the standard conditions with undetectable aldehyde reduction. The products are obtained effectively and in high yields, (Table 11, entries 10-12). As the basicity and nucleophilicity of the amines decrease, the reductive amination becomes slow and aldehyde reduction becomes a competing reaction. The reductive aminations of aldehydes with amines such as *o*-nitroaniline (Table 11, entry 13), 2,4dichloroaniline (Table 11, entries 14 and 15), 2-aminothiazole (Table 11, entries 16 and 17), and iminostilbene (Table 11, entry 18) are accompanied by about 10-30% aldehyde reduction. The reactions are modified to use the amines as limiting agents and up to 1.5 equiv of aldehyde to compensate for this side reaction. These reductive aminations are very efficient and give isolated yields ranging from 60 to 96%. These reactions expanded the scope of reductive amination reactions to limits that are not achievable by any of the commonly used reducing agents.

The non-basic amines such as 2,4,6-trichloroaniline and 2,4-dinitroaniline are the least reactive. Aromatic aldehydes such as benzaldehyde could not be reductively aminated with these amines (see Table 15). However, the reductive ami-

| Table | 11 | Reductive | amination | of ketones | and | aldehvdes | with  | weakly | hasic | aminesa |  |
|-------|----|-----------|-----------|------------|-----|-----------|-------|--------|-------|---------|--|
| labie |    | Reductive | annauon   | of Ketones | anu | anuchyucs | WILLI | weakiy | Dasic | annies  |  |

| Entry | Reductive Amination Product | Conditions | Yield |  |
|-------|-----------------------------|------------|-------|--|
|       |                             | STAB-H     |       |  |
|       |                             | DCE        | 0.00  |  |
| 1     | H H                         | AcOH       | 89%   |  |
|       |                             | 48 h       |       |  |
|       |                             | STAB-H     |       |  |
| 2     |                             | DCE        | 0.00  |  |
| 2     |                             | AcOH       | 90%   |  |
|       |                             | 3.5 h      |       |  |
|       |                             | STAB-H     |       |  |
| 3     |                             | DCE        | 66%   |  |
|       |                             | 23 h       |       |  |
|       |                             | STAB-H     |       |  |
| 4     | <u> </u>                    | DCE        | 71%   |  |
|       |                             | 24 h       |       |  |
|       |                             | STAB-H     |       |  |
| 5     | С Соон                      | DCE        | 79%   |  |
|       |                             | 22 h       |       |  |
|       |                             | STAB-H     |       |  |
|       |                             | DCE        |       |  |
| 6     |                             | AcOH       | 85%   |  |
|       |                             | 3.5 h      |       |  |
|       |                             | STAB-H     |       |  |
| 7     |                             | DCE        | 60%   |  |
|       |                             | 18 h       |       |  |
|       |                             | STAB-H     |       |  |
|       |                             | DCE        |       |  |
| 8     |                             | АсОН       | 94%   |  |
|       |                             | 14 h       |       |  |
|       |                             | STAB-H     |       |  |
| 9     |                             | DCE        | 30%   |  |
|       | NO <sub>2</sub>             | 144 h      |       |  |
|       | ң                           | STAB-H     |       |  |
| 10    |                             | DCE        | 90%   |  |
|       | СН3                         | AcOH       |       |  |
|       |                             | 0.5 h      |       |  |
|       |                             | STAB-H     |       |  |
| 11    |                             | DCE        | 85%   |  |
|       | Ph_/*                       | AcOH       |       |  |
|       |                             | 1.5 h      |       |  |

| Entry | Reductive Amination Product         | Conditions | Yield  |
|-------|-------------------------------------|------------|--------|
|       |                                     | STAB-H     |        |
|       |                                     | DCE        |        |
| 12    |                                     | АсОН       | 86%    |
|       |                                     | 0.5 h      |        |
|       |                                     | STAB-H     |        |
|       |                                     | DCE        |        |
| 13    |                                     | AcOH       | 66%    |
|       |                                     | 1.5 h      |        |
|       |                                     | STAB-H     |        |
|       |                                     | DCE        |        |
| 14    |                                     | AcOH       | 96%    |
|       |                                     | 0.6 h      |        |
|       |                                     | STAB-H     |        |
|       |                                     | DCE        |        |
| 15    | Ph                                  | AcOH       | 70%    |
|       |                                     | 1.5 h      |        |
|       |                                     | STAB-H     |        |
|       | Ph                                  | DCE        |        |
| 16    |                                     | AcOH       | 60%    |
|       |                                     | 72 h       |        |
|       |                                     | STAB-H     |        |
|       | ★ S <sub>&gt;</sub>                 | DCE        | 0.5.00 |
| 17    |                                     | AcOH       | 85%    |
|       |                                     | 16 h       |        |
|       |                                     | STAB-H     |        |
| 10    |                                     | DCE        | 200    |
| 18    | *<br>C <sub>6</sub> H <sub>13</sub> | AcOH       | 82%    |
|       |                                     | 10 h       |        |
|       | ÇI                                  | STAB-H     |        |
| 10    | H N                                 | DCE        | 58%    |
| 15    |                                     | AcOH       | 5670   |
|       |                                     | 48 h       |        |
|       | Н /=>                               | STAB-H     |        |
| 20    |                                     | DCE        | 61%    |
|       | × )<br>NO <sub>2</sub>              | AcOH       |        |
|       | C 41 H 22 x                         | 96 h       |        |
|       | N /                                 | STAB-H     |        |
|       |                                     | AcOH       |        |
| 21    |                                     | DCM        | 95%    |
|       |                                     | 2h         |        |
|       |                                     | rt         |        |
| 1     |                                     |            | 1      |

| Entry | <b>Reductive Amination Product</b>    | Conditions | Yield  |
|-------|---------------------------------------|------------|--------|
|       |                                       | STAB-H     |        |
| 22    | H<br>H<br>H<br>H<br>H                 | DCE        | 9501   |
| 22    |                                       | АсОН       | 0.5 /0 |
|       |                                       | 28 h       |        |
|       |                                       | STAB-H     |        |
| 23    | Ph H SO <sub>2</sub> -CH <sub>3</sub> | DCE        | 8007   |
|       |                                       | АсОН       | 80 %   |
|       |                                       | 48 h       |        |
|       |                                       |            |        |

<sup>*a*</sup> Note: Newly formed C–N bonds are labeled by asterisks (\*); STAB-H = sodium triacetoxyborohydride; DCE = 1,2-dichloroethane; DCM = dichloromethane; AcOH = acetic acid; rt = room temperature. All examples (except entry 21) from reference 37; entry 21 from reference 271.

nation of cyclohexane carboxaldehyde with either amine progressed slowly and was accompanied by considerable aldehyde reduction. The reaction was carried out in the presence of 3-5 equiv of AcOH and required an occasional addition of excess aldehyde and reducing agent up to 5 equiv each over 2-4 days to effect complete consumption of the amines. The amine products are not basic enough to form salts and could only be isolated by chromatography to give a 61% and 58% yield, respectively (Table 11, entries 19 and 20). Based on GC/mass spectrometric analysis of these reactions we hypothesize that these reactions probably proceed via initial formation of enamines, rather than imines. This may also explain the lack of reactivity toward aromatic aldehydes, which cannot form enamines.

[60]Fulleropyrrolidines are very weakly basic; however, they were used in reductive amination of aldehydes to synthesize *N*-alkylated derivatives. An example is the reductive amination with dodecanal, which provided the *n*-dodecyl derivative in 95% yield (Table 11, entry 21). Aromatic and unsaturated aldehydes reacted much slower, while attempts to apply the reaction for ketones failed (see Table 15).

This procedure is exceptional not only with weakly and nonbasic amines but also with substrates that never before were used in reductive amination reactions, namely, sulfonamides. The reaction of *p*-toluenesulfonamide with both aliphatic and aromatic aldehydes afforded the corresponding *N*-alkyl sulfonamides in good isolated yields (Table 11, entries 22 and 23). However, this reaction is limited to aldehydes; ketones did not react.

**7. Reductive Aminations Using Solid Supports.** A variety of solid supports have been utilized to perform reductive amination reactions using STAB-H as a reducing agent. In most cases, ketones or aldehydes are attached to the solid support and then reacted with excess amines to drive the reactions to completion. Due to the mild nature of STAB-H, it is an ideal choice to perform reductive amination on a solid support. Often libraries of compounds are created with this technique, which utilizes a wide range of aldehydes, ketones and/or amines where STAB-H will not leave residual

CN as can be the case with NaBH<sub>3</sub>CN, and a wide range of functional groups are tolerant to its mild nature.

The BAL (backbone amide linker) resin bearing aldehyde groups has been utilized to perform reductive amination with a variety of aromatic amines (Table 12, entries 1, 2). A FMPB solid-supported secondary amine was subjected to reductive amination conditions with a variety of aromatic aldehydes to generate a library of mu and delta opioid agonists (Table 12, entry 3). Substituted aniline derivatives were attached to a formyldimethoxyphenyl (FDMP) resin using reductive amination with STAB-H to form a series of a resin-bound arylamines (step 1, Table 12, entry 4). The amines were further functionalized with nitrobenzoyl chlorides to the corresponding nitroamides, reduced to aminobenzanilides and the amines were reductively alkylated with a diverse collection of aromatic aldehydes using STAB-H to build a library of alkylaminobenzanilides for biological testing (step 4, Table 12, entry 4). A HMBA-POEPOP900supported peptide-aldehyde was treated with a variety of amines (e.g., cyclohexyl amine) and STAB-H to give the product in high purity (Table 12, entry 5). The Merrifield resin has been used as a solid support for both ketones and aldehydes to perform reductive amination with aliphatic and aromatic amines to give products in high yields. For example, Merrifield-supported enol-ethers were hydrolyzed and subjected to direct reductive amination with amines and STAB-H to give the amine products in yields ranging from 13% to 89% (Table 12, entry 6). Arylsulfonate ester resin bearing an aldehyde group was reductively aminated with STAB-H in high yield and purity (Table 14, entry 7). Triacetoxyborohydride was attached to an MP resin and utilized to perform reductive amination on a variety of solution phase aldehydes and amines with encouraging results (Table 12, entry 8). A PEG-OMe supported aldehyde was treated with a variety of amino esters to give excellent yields of isolated reductive amination products (Table 12, entry 9). A very diverse carbohydrate mimetic library was created using solid supported sugar ketones and aldehydes. Upon reaction with amines and/or ammonia good to excellent yields were obtained with high purity (Table 12, entries 10, 11). A

Table 12. Reductive aminations using solid supports<sup>a</sup>

| Entry | Structure                  | Conditions                           | Resin                   | Yield             | Ref     |
|-------|----------------------------|--------------------------------------|-------------------------|-------------------|---------|
|       | * O                        | STAB-H                               |                         |                   |         |
| 1     |                            | AcOH                                 | BAL                     |                   | 272     |
|       |                            | NMP                                  |                         |                   |         |
|       |                            | STAB-H                               |                         |                   |         |
|       | HN-R.                      | DMF-MeOH                             |                         | 41-63%            |         |
| 2     |                            | or                                   | BAL-PEG-PS              | (including<br>3-  | 273     |
|       | •                          | DCE                                  |                         | additional steps) |         |
|       |                            | AcOH                                 |                         | supsy             |         |
|       |                            | STAB-H                               |                         |                   |         |
|       |                            | DCE/DMF                              |                         |                   |         |
| 3     |                            | Microwave<br>irradiation             | FMPB                    |                   | 232     |
|       |                            | 120 °C                               |                         |                   |         |
|       |                            | Step 1:                              |                         |                   |         |
|       |                            | STAB-H                               |                         | 13-94%            |         |
|       | O HN <sup>*</sup> ^Ph      | DMF                                  |                         |                   |         |
|       |                            | AcOH                                 |                         |                   |         |
|       |                            | overnight                            | EDMD                    |                   | 274     |
| 4     |                            | Step 4:                              | FDMP                    |                   | 274     |
|       | Ť                          | STAB-H                               |                         |                   |         |
|       |                            | DCE                                  |                         |                   |         |
|       |                            | AcOH                                 |                         |                   |         |
|       |                            | overnight                            |                         |                   |         |
|       |                            | STAB-H                               |                         | 210               |         |
| 5     |                            | DMSO:DCM<br>(1:1)                    | HMBA-<br>POEPOP900      | (>90% by          | 275     |
|       | Ύ,                         | 1%AcOH                               |                         | inpic)            |         |
|       | U CCH3                     | 1. 1M H <sub>2</sub> SO <sub>4</sub> |                         |                   |         |
|       |                            | DMF                                  |                         |                   |         |
| 6     | OCH3                       | 2. STAB-H                            | Merrifield              | 89%               | 276     |
|       | N N                        | rt                                   |                         |                   |         |
|       | н                          | DMF                                  |                         |                   |         |
|       |                            | STAB-H                               |                         |                   |         |
|       |                            | DCM                                  |                         | >95%              |         |
| 7     | →NH →OCH3                  | AcOH                                 | Merrifield              | (85%              | 277,278 |
|       |                            | 24 h                                 |                         | punty             |         |
|       | <u> </u>                   | 11                                   |                         |                   |         |
|       |                            | MP-BH(OAc) <sub>3</sub>              |                         |                   |         |
| 8     | (MP-BH(UAC) <sub>3</sub> ) | THF                                  | MP-BH(OAc) <sub>3</sub> | 39-93%            | 279     |
|       | example: Me-N_N*           | 16 h                                 |                         |                   |         |

| Entry | Structure                                                                                                                                     | Conditions                                                                   | Resin                                                   | Yield                                                   | Ref |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-----|
| 9     | $ \begin{array}{c}                                     $                                                                                      | STAB-H<br>DCM<br>NaOAc<br>0 °C to rt<br>5 h                                  | PEG-OMe                                                 | 91-99%                                                  | 280 |
| 10    | $n = 1, 2, 3$ $R_1 = H, Me$ $X = amino acid esters, NH_2$ $NHAc$ $R_1 = H, Me$ $X = amino acid esters, NH_2$                                  | STABH<br>DCM / MeOH<br>Na <sub>2</sub> SO <sub>4</sub><br>AcOH<br>18 h<br>rt | PS-Trityl-Cl                                            | 80-99%<br>purity<br>>90%<br>When X =<br>NH <sub>2</sub> | 281 |
| 11    | HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>R <sub>1</sub> = Me, Ph<br>NHAC<br>R <sub>1</sub> X<br>X = amino acid esters, NH <sub>2</sub> | STABH<br>DCM / MeOH<br>Na2SO4<br>AcOH<br>18 h<br>rt                          | Rink                                                    | 80-99%                                                  | 281 |
| 12    |                                                                                                                                               | STAB-H<br>DCM<br>rt<br>16 h                                                  | Rink Amide                                              | 95%                                                     | 282 |
| 13    | OH OH                                                                                                                                         | STAB-H<br>HC(OMe) <sub>3</sub><br>DMF<br>12 h + 12 h,<br>rt                  | Rink Amide                                              | 55-87%                                                  | 283 |
| 14    | O H O CH3<br>Ph                                                                                                                               | STAB-H<br>DCM<br>sonicate                                                    | Wang                                                    | 85-95%                                                  | 284 |
| 15    | O<br>EtO<br>**<br>NHR <sub>2</sub>                                                                                                            | STAB-H<br>DCM<br>AcOH<br>Na <sub>2</sub> SO <sub>4</sub><br>ultrasound       | Wang                                                    |                                                         | 285 |
| 16    |                                                                                                                                               | STAB-H<br>AcOH (10%)                                                         | Wang                                                    |                                                         | 286 |
| 17    |                                                                                                                                               | STAB-H<br>AcOH<br>DMF<br>TiCl(O <i>i</i> -Pr) <sub>3</sub><br>STAB-H         | 4-(4-formyl-3-<br>methoxy-<br>phenoxy)<br>butyryl resin | 53%<br>66%                                              | 152 |

<sup>*a*</sup> Note: Newly formed C–N bonds are labeled by asterisks (\*); a blank entry for yield indicates no yield was given; STAB-H = sodium triacetoxyborohydride; DCE = 1,2-dichloroethane; DCM = dichloromethane; THF = tetrahydrofuran; DMF = N,N-dimethylformamide; DMSO = dimethylsulfoxide; AcOH = acetic acid; NMP = N-methylpyrrolidinone; rt = room temperature.

functionalized aniline derivative bound to a rink amide resin was treated with cyclohexylcarboxaldehyde and STAB-H in DCM to give a 95% yield of the product (Table 12, entry 12). The rink amide resin was reacted with salicylaldehyde under standard reductive amination conditions with STAB-H utilizing trimethyl orthoformate as a solvent to provide the supported phenol derivative (Table 12, entry 13) which was used in the synthesis of substituted dibenzazocines. A modified Wang resin has been used to support amino acid derivatives and upon treatment with aldehydes and STAB-H in DCM provided excellent yields of isolated products (Table 12, entry 14). Wang resin supported bicyclo[2,2,2]octanones were reductively aminated using excess amine, Na<sub>2</sub>SO<sub>4</sub> and ultrasound to drive the reactions to completion (Table 12, entry 15). Another Wang-resin-supported amine was treated with 2-acrolein furan performs intramolecular Diels-Alder reactions (Table 12, entry 16). A solid supported aldehyde was found to react with an isoxazole using a combination of TiCl(Oi-Pr)<sub>3</sub>/STAB-H. It was determined the use of Ti-(Oi-Pr)<sub>4</sub> was not sufficiently Lewis acidic to activate the aldehyde for imine formation (Table 12, entry 17).

8. Synthesis of Primary Amines. The reductive amination of aldehydes and ketones with ammonia is a known way for the preparation of primary amines; however, most of the existing reductive amination procedures are not effective in achieving this task. The reaction usually requires the use of a large excess of ammonia (10 or more equivalents) to avoid formation of secondary amines. The use of sodium cyanoborohydride is advantageous since the reactions are carried out in methanol which can dissolve either ammonia or ammonium acetate, the most common and convenient source of ammonia. Our attempts to develop a practical procedure for the synthesis of primary amines by reductive amination of ketones or aldehydes with NaBH(OAc)<sub>3</sub> were hindered by the poor solubility of ammonium acetate in THF or DCE. The reaction gave exclusively dialkylamines. The use of a large excess, up to 10 equiv, of ammonium acetate in DCE, THF, or CH<sub>3</sub>CN still gives the dialkylamines. This reaction can thus be used for the effective preparation of symmetric dialkylamines, such as dicycloheptylamine (Table 13, entry 1).<sup>37</sup> Our search for better conditions that may be used in preparation of primary amines via reductive amination in aprotic solvents led to the use of ammonium trifluoroacetate.287-289 It has a clear advantage over am-

- (271) Xiao, S.; Li, Y.; Li, Y.; Liu, H.; Li, H.; Zhuang, J.; Liu, Y.; Lu, F.; Zhang, D.; Zhu, D. *Tetrahedron Lett.* **2004**, 45 (20), 3975.
- (272) Wang, Y.; Jin, J.; Moore, M. L.; Graybill, T. L.; Wang, F.; Wang, M. A.; Wang, B.; Jin, Q.; Rivero, R. A. *Tetrahedron Lett.* **2004**, *45* (35), 6645.
- (273) Shannon, S. K.; Peacock, M. J.; Kates, S. A.; Barany, G. J. Comb. Chem. 2003, 5 (6), 860.
- (274) El-Araby, M.; Guo, H.; Pottorf, R. S.; Player, M. R. J. Comb. Chem. 2004, 6 (5), 789.
- (275) Groth, T.; Meldal, M. J. Comb. Chem. 2001, 3 (1), 45.
- (276) Ball, C. P.; Barrett, A. G. M.; Commercon, A.; Compére, D.; Kuhn, C.; Roberts, R. S.; Smith, M. L.; Venier, O. *Chem. Commun.* **1998**, (18), 2019.
- (277) Baxter, E. W.; Rueter, J. K.; Nortey, S. O.; Reitz, A. B. Tetrahedron Lett. 1998, 39 (9), 979.
- (278) Rueter, J. K.; Nortey, S. O.; Baxter, E. W.; Leo, G. C.; Reitz, A. B. *Tetrahedron Lett.* **1998**, *39*, 975.
- (279) Bhattacharyya, S.; Rana, S.; Gooding, O. W.; Labadie, J. *Tetrahedron Lett.* 2003, 44 (27), 4957.
- (280) Cheng, M.-F.; Fang, J.-M. J. Comb. Chem. 2004, 6 (1), 99.

monium acetate for being soluble in THF and can be used effectively in reductive amination reactions. The reactions with cycloheptanone and cyclododecanone (Table 13, entries 2-4) give the corresponding primary amines in excellent isolated yields as the major products with <5% of the dialkylamines.<sup>288</sup> We have reported some of these results with ketones and aldehydes previously,<sup>287-289</sup> but since then we expanded the study and applied the reaction to several ketone and aldehyde substrates and the results will be the subject of a future report. Other reported reactions included the formation of a cyclohexylamine derivative in 41% yield (Table 13, entry 5) and the preparation of a secondary amine (Table 13, entry 6). A very interesting result was obtained from the carbonyl cis-1,4-oligoisoprene mentioned earlier in Table 4, entry 49. The reductive amination of this ketoaldehyde with excess ammonium acetate and STAB-H resulted in the selective formation of the primary amine in reaction with aldehyde in 86% yield and no reaction with the ketone (Table 13, entry 7).

**9. Miscellaneous Reactions.** As can be seen throughout the tables of examples, a wide range of carbon-nitrogen bonds have been formed utilizing STAB-H as the reducing agent. Many examples fit into bimolecular aldehydes and ketones with primary or secondary amines. The examples below (Table 14) represent reactions that do not fall into

- (281) Hummel, G.; Jobron, L.; Hindsgaul, O. J. Carbohydr. Chem. 2003, 22 (7 and 8), 781.
- (282) Arumugam, V.; Routledge, A.; Abell, C.; Balasubramanian, S. *Tetrahedron Lett.* **1997**, *38* (36), 6473.
- (283) Ouyang, X.; Kiselyov, A. S. Tetrahedron 1999, 55 (28), 8295.
- (284) Gordon, D. W.; Steele, J. Bioorg. Med. Chem. Lett. 1995, 5 (1), 47.
- (285) Ley, S. V.; Mynett, D. M.; Koot, W.-J. Synlett 1995, 10, 1017.
- (286) Sun, S.; Murray, W. V. J. Org. Chem. 1999, 64 (16), 5941.
- (287) Abdel-Magid, A. F.; Maryanoff, C. A. Use of Sodium Triacetoxyborohydride in Reductive Amination of Ketones and Aldehydes. In *Reductions in Organic Synthesis: Recent Advances and Practical Applications*; Abdel-Magid, A. F., Ed.; ACS Symp. Ser. 641; American Chemical Society: Washington, DC, 1996; p 201.
- (288) Mehrman, S. J.; Abdel-Magid, A. F.; Mailliard, A.; Maryanoff, C. A. Presented at the 37th National Organic Symposium, Indiana University, Bloomington, IN, June 2003; Abstract A25.
- (289) Mehrman, S. J.; Abdel-Magid, A. F.; Mailliard, A.; Maryanoff, C. A. Presented at the 38th National Organic Symposium, University of Utah, Salt Lake City, UT, June 2005; Abstract C21.
- (290) Sattlegger, M.; Buschmann, H.; Przewosny, M.; Englberger, W.; Koegel, B.-Y.; Schick, H. U.S. Patent Application 04/0224954A1, 2004.
- (291) Rosen, G. M.; Schneider, E.; Shortkroff, S.; Tsai, P.; Winalski, C. S. J. Chem. Soc., Perkin Trans. 1 2002, (23), 2663.
- (292) Manescalchi, F.; Nardi, A. R.; Savoia, D. Tetrahedron Lett. 1994, 35 (17), 2775.
- (293) Liu, J.; Numa, M. M. D.; Liu, H.; Huang, S.-J.; Sears, P.; Shikhman, A. R.; Wong, C.-H. J. Org. Chem. 2004, 69 (19), 6273.
- (294) Huang, W.; O'Donnell, M.-M.; Bi, G.; Liu, J.; Yu, L.; Baldino, C. M.; Bell, A. S.; Underwood, T. J. *Tetrahedron Lett.* **2004**, *45* (46), 8511.
- (295) La Ferla, B.; Cipolla, L.; Peri, F.; Nicotra, F. J. Carbohydr. Chem. 2001, 20 (7 and 8), 667.
- (296) Hart, D. J.; Leroy, V. Tetrahedron 1995, 51 (20), 5757.
- (297) Knapp, S.; Morriello, G. J.; Nandan, S. R.; Emge, T. J.; Doss, G. A.; Mosley, R. T.; Chen, L. J. Org. Chem. 2001, 66 (17), 5822.
- (298) Knapp, S.; Morriello, G. J.; Doss, G. A. Org. Lett. 2002, 4 (4), 603.
- (299) Hoarau, C.; Couture, A.; Deniau, E.; Grandclaudon, P. J. Org. Chem. 2002, 67 (16), 5846.
- (300) Pégorier, L.; Petit, Y.; Larchevêque, M. J. Chem. Soc., Chem. Commun. 1994, (5), 633.
- (301) Palacios, F.; Gil, M. J.; Martínez de Marigorta, E.; Rodríguez, M. *Tetrahedron* 2000, 56 (34), 6319.
- (302) Beshore, D. C.; Dinsmore, C. J. Org. Lett. 2002, 4 (7), 1201.
- (303) Cho, B. T.; Kang, S. K. Synlett 2004, (9), 1484.
- (304) Groarke, M.; Hartzoulakis, B.; McKervey, M. A.; Walker, B.; Williams, C. H. Bioorg. Med. Chem. Lett. 2000, 10 (2), 153.

Table 13. Preparation of primary amines<sup>a</sup>

| Entry | Product                                                                   | Conditions                         | Yield        | Reference |
|-------|---------------------------------------------------------------------------|------------------------------------|--------------|-----------|
|       | $\sim$                                                                    | STAB-H                             |              |           |
| 1     | $\left( \right) \xrightarrow{\star} N \xrightarrow{\star} \left( \right)$ | NH₄OAc                             | 91%          | 287       |
|       | улн - У                                                                   | THF                                |              |           |
|       |                                                                           | STAB-H                             |              |           |
| 2     | * NH                                                                      | NH <sub>4</sub> OCOCF <sub>3</sub> | 95%          | 207       |
| 2     |                                                                           | THF                                | < 5% diamine | 207       |
|       |                                                                           | 4 h                                |              |           |
|       |                                                                           | STAB-H                             |              |           |
| 2     |                                                                           | NH <sub>4</sub> OCOCF <sub>3</sub> | 95%          | 297       |
| 3     |                                                                           | THF                                | < 5% diamine | 287       |
|       |                                                                           | 3h                                 |              |           |
|       |                                                                           | STAB-H                             |              |           |
| 4     | *                                                                         | NH <sub>4</sub> OCOCF <sub>3</sub> | 95%          | 197       |
| 4     |                                                                           | THF                                | < 5% diamine | 207       |
|       |                                                                           | 1 h                                |              |           |
|       | С росн3                                                                   | STAB-H                             |              |           |
| 5     | HO                                                                        | NH <sub>4</sub> OCOCF <sub>3</sub> | 41%          | 290       |
| 5     |                                                                           | THF                                | 7170         | 2,0       |
|       |                                                                           | Overnight                          |              |           |
|       |                                                                           | STAB-H                             |              |           |
| 6     | Ó-N N-Ó                                                                   | NH <sub>4</sub> OCOCF <sub>3</sub> | 65%          | 291       |
| 0     | + $+$ $+$                                                                 | THF                                | 05 10        | 271       |
|       |                                                                           | 3A MS                              |              |           |
|       |                                                                           | STAB-Н                             |              |           |
|       |                                                                           | NH₄OAc                             |              |           |
| 7     | $H_2N^{*}$                                                                | DCE                                | 86%          | 134       |
| ·     |                                                                           | AcOH                               |              | 154       |
|       |                                                                           | rt                                 |              |           |
|       |                                                                           | 24 h                               |              |           |

<sup>*a*</sup> Note: Newly formed C–N bonds are labeled by asterisks (\*); STAB-H = sodium triacetoxyborohydride; DCE = 1,2-dichloroethane; THF = tetrahydrofuran; AcOH = acetic acid; MS = molecular sieves; rt = room temperature.

this general class of reactions by being either intramolecular or unique substrates.

Manescalci et al. have examined the reductive amination of 5-phenyl-5-oxopentanal with (*S*)-valine methyl ester using STAB-H. The initial reductive amination is intermolecular with the aldehyde followed by a intramolecular reductive amination to provide the cyclized piperidine derivatives in good yield and moderate selectivity (Table 14, entry 1). It is evident from this result the intramolecular reductive amination of an aromatic ketone occurred much more readily than the intermolecular reductive amination of acetophenone with benzylamine (see Table 15, entry 1). Liu has demonstrated the synthesis of tetra-substituted pyrrolidine using an intramolecular cyclization of a 4-azido ketone. Using STAB-H, a 3:1 mixture of two isomers was obtained, whereas the use of sodium cyanoborohydride lead to the formation of a 10:1 ratio of the same mixture (Table 14, entry 2). It is interesting to note that using the epimer of the starting azidoketone lead to formation of one major product almost exclusively with either sodium cyanoborohydride or STAB-H

Table 14. Miscellaneous reactions<sup>a</sup>

| Entry | Structure                                                              | Conditions                       | Yield                                          | Reference                             |
|-------|------------------------------------------------------------------------|----------------------------------|------------------------------------------------|---------------------------------------|
|       |                                                                        | STAB-H                           | 84%                                            |                                       |
| 1     | N-CO <sub>2</sub> CH <sub>3</sub>                                      | THF                              | (52% de)                                       |                                       |
|       |                                                                        | АсОН                             |                                                | 292                                   |
|       |                                                                        | 24 h                             | (better de ratio<br>from NaCNBH <sub>3</sub> ) |                                       |
|       |                                                                        | 0 °C to rt                       |                                                |                                       |
| 2     | BnO H OTBDMS BnO H OTBDMS<br>BnO OBn BnO OBn<br>Major Minor            | STAB-H or<br>NaCNBH <sub>3</sub> |                                                |                                       |
|       |                                                                        | <i>p</i> -TsOH                   |                                                | 293                                   |
|       |                                                                        | DCM                              |                                                |                                       |
|       |                                                                        | STAB-H or<br>NaCNBH <sub>3</sub> |                                                |                                       |
| 3     | BnÖ OBn BnÖ OBn<br>Major Minor                                         | <i>p</i> -TsOH                   | 72%                                            | 293                                   |
|       |                                                                        | DCM                              |                                                |                                       |
|       |                                                                        | 1. Et <sub>2</sub> All, MeCN     |                                                |                                       |
| 4     | N<br>N<br>Ph                                                           | 2. STAB-H                        | 63%                                            | 294                                   |
|       |                                                                        | 6 h                              |                                                |                                       |
|       |                                                                        | rt                               |                                                |                                       |
|       |                                                                        | STAB-H                           |                                                |                                       |
|       |                                                                        | DCM                              | 54%                                            |                                       |
| 5     | TBDPSO                                                                 | АсОН                             | 2.1 (B, S) mintum                              | 295                                   |
|       |                                                                        | MgSO <sub>4</sub>                | at new center                                  |                                       |
|       |                                                                        | STAB-H                           |                                                |                                       |
| 6     |                                                                        | AcOH                             | 92%                                            | 206                                   |
| 0     | H <sub>3</sub> CO <sub>2</sub> Bn H <sub>3</sub> CO CO <sub>2</sub> Bn | rt                               | (50:1 ratio)                                   | 290                                   |
|       |                                                                        | 1 h                              |                                                |                                       |
|       | \                                                                      | STAB-H                           |                                                |                                       |
| 7     | EtO <sub>2</sub> C <sub>w</sub> N                                      | DCE                              | 41%                                            | 297                                   |
|       | BzO <sup>rd</sup> ,NH                                                  | <i>i</i> -Pr <sub>2</sub> EtN    |                                                |                                       |
|       |                                                                        | rt                               |                                                |                                       |
|       |                                                                        | overnight                        |                                                |                                       |
|       |                                                                        | STAB-H                           |                                                | · · · · · · · · · · · · · · · · · · · |
|       |                                                                        | DCE                              |                                                |                                       |
| 8     | EtO <sub>2</sub> C NH OTBS                                             | 4A MS                            | 28%                                            | 298                                   |
|       |                                                                        | rt                               |                                                |                                       |
|       |                                                                        | 15 h                             |                                                |                                       |
|       |                                                                        | STAB-H                           |                                                |                                       |
|       |                                                                        | DCE                              | 94.01                                          | 200                                   |
| 9     | H <sub>3</sub> CO                                                      | Et <sub>3</sub> N                | 00%                                            | 299                                   |
|       |                                                                        | 12 h                             |                                                |                                       |

| Entry | Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Conditions                             | Yield                                  | Reference |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|-----------|
| 10    | Bn<br>NH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Me <sub>4</sub> N-BH(OAc) <sub>3</sub> | 68%<br>Anti / syn ratio<br>(92:8)      | 300       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DCE                                    |                                        |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | АсОН                                   |                                        |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4A MS                                  |                                        |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8 h                                    |                                        |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rt                                     |                                        |           |
| 11    | $(Et_2O)_2P$<br>$(Et_2O)_2P$<br>$(Et_2O)_2P$<br>$(Et_2O)_2P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | STAB-H                                 | 71%                                    | 301       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MeCN                                   |                                        |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                        |           |
| 12    | $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $ | STAB-H                                 | 86%<br>(>99% ee)                       | 302       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MeCN                                   |                                        |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | АсОН                                   |                                        |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4A MS                                  |                                        |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4 h                                    |                                        |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | reflux,                                |                                        |           |
| 13    | Co∕NH-NH-Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | STAB-H                                 | 92%                                    | 37        |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DCE                                    |                                        |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | АсОН                                   |                                        |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6 h                                    |                                        |           |
| 14    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STAB-H                                 | 91%                                    | 37        |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10min                                  |                                        |           |
| 15    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STAB-H                                 | 80%                                    | 37        |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.5 h                                  |                                        |           |
| 16    | $ \xrightarrow{N^{Ph}}_{O} \xrightarrow{HN^{Ph}}_{O} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | STAB-H                                 | 94:6<br>product : starting<br>material | 303       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DCE                                    |                                        |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19 h                                   |                                        |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rt                                     |                                        |           |
| 17    | Cbz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | STAB-H                                 |                                        | 304       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DCM                                    |                                        |           |
| 1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | 1                                      | 1         |

<sup>*a*</sup> Note: Newly formed C–N bonds are labeled by asterisks (\*); a blank entry for yield indicates no yield was given; STAB-H = sodium triacetoxyborohydride; DCE = 1,2-dichloroethane; DCM = dichloromethane; THF = tetrahydrofuran; AcOH = acetic acid; MS = molecular sieves; rt = room temperature.

(Table 14, entry 3). A variety of 1,2-disubstituted-3-alkylidenylpyrrolidines were synthesized via in situ formation of pyrrolium salts and subsequent reduction using STAB-H (Table 14, entry 4). Sucrose-related imino-C-disaccharides were synthesized utilizing an intramolecular reductive amination to form the tetra-substituted pyrrole in reasonable yield and fair selectivity. It was noted that the selectivity of the reduction was due to an intramolecular hydroxy-directed delivery of hydride via alcohol at the 3-position (Table 14, entry 5). In the synthesis of quinolizidine alkaloids, Hart et al. has conducted a comparison between NaBH<sub>3</sub>CN and NaBH(OAc)<sub>3</sub> in the reduction of vinylogous urethanes to the corresponding tertiary amines (Table 14, entry 6). STAB-H reduced the vinylogous urethane to give a 92% isolated yield of the indicated product in >50:1 selectivity. The use of sodium cyanoborohydride lead to a 70% yield as

Table 15. Limitations<sup>a</sup>





<sup>*a*</sup> Note: STAB-H = sodium triacetoxyborohydride; DCE = 1,2-dichloroethane; DCM = dichloromethane; THF = tetrahydrofuran; AcOH = acetic acid. Examples in entries 1-11 and 13-15 from reference 37; entry 12 from reference 271.

a 1:1 mixture. The enhanced selectivity of STAB-H was attributed to the steric bulk difference as compared to sodium cyanoborohydride.

Knapp et al. was able to assemble seven-membered rings utilizing an intramolecular reductive amination strategy (Table 14, entries 7, 8). In the synthesis of amaryllidaceae alkaloid, buflavine (Table 14, entry 9), the final key step was an intramolecular reductive amination of the appropriate aminoaldehyde with STAB-H to construct the tetrahydrodibenzo[c,e]azocine ring structure in an excellent isolated yield of 86%. The mild nature of STAB-H allows the reductive amination of  $\alpha$ ,  $\beta$ -epoxyketones with a range of amines using tetramethylammonium triacetoxyborohydride, without affecting the epoxide, to give reasonable yields (33-69%) and selectivities (72:28 to 95:5) of the anti-alkylamino epoxides (Table 14, entry 10). STAB-H was effectively used to reduce imines derived from the condensation of aminoalkylbisphosphonates with ketones or aldehydes to the corresponding amines (Table 14, entry 11). A variety of substituted piperazinones were prepared via a tandem three-reaction sequence of reductive amination of aldehydes with  $\alpha$ -amino acids using STAB-H followed by heating to reflux to effect transamidation and finally cyclization to form the piperazinone rings (Table 14, entry 12). The example shown here required heating for 4 h, following the initial reductive amination, to give the piperazinone in 86% yield and >99% ee. Phenyl hydrazine is not usually a candidate for reductive amination reactions; however, it was successfully used to reductively aminate a cyclohexanone derivative in excellent yield using STAB-H (Table 14, entry 13). A variety of hydride reducing agents were examined to reduce the aldimine derived from 4-acetylbenzaldehyde. The result showed that STAB-H would selectively reduce the imine in the presence of the ketone, giving rise to a 94:6 ratio of product to starting material after 19 h of reaction time (Table 14, entry 16). While this study did not introduce any new findings for STAB-H, the reduction was carried out by mixing the reactants in the absence of any solvent. N-Protected aminoglyoxals were treated with  $\alpha$ -amino acids, and the resulting imines were subjected to reduction with STAB-H to give peptide analogues (Table 14, entry 17). The use of STAB-H however caused some ketone reduction, the use of the Cl<sub>3</sub>SiH/DMF reducing system gave a better result with no ketone reduction.

**10. Limitations.** The limitations of the reductive amination using sodium triacetoxyborohydride include many unreactive ketones either due to electronic factors such as aromatic and  $\alpha,\beta$ -unsaturated ketones or because of stereochemical reasons as in camphor. These ketones react either very slowly or show no reaction under the standard reaction conditions. Examples of slow and failed reactions representing the limitations of this procedure are listed in Table 15. For example, the reductive amination of acetophenone with benzylamine proceeds at a very slow rate to reach 55% conversion over 10 days (Table 15, entry 1). A similar reaction rate was observed in the reductive amination of acetophenone with cyclohexylamine and 1-acetylcyclohexene with morpholine (Table 15, entries 2 and 3). In competition studies, saturated ketones such as cyclohexanone and acetyl cyclohexane were reductively aminated selectively in the presence of these slow reacting ketones to give the corresponding amines in excellent yields with full recovery of the unreacted ketones (Table 15, entries 4 and 5).<sup>37</sup> The reductive amination with sterically hindered amines or ketones proceeds slowly and may not result in any reaction. For example, the attempted reductive amination of cycloheptanone with diisopropylamine (Table 15, entry 6) or camphor with benzylamine (Table 15, entry 7) gave no detectable products even after 4 days of reaction. As mentioned before, aldehydes are reductively aminated with sterically hindered amines, however, at a slower rate and may be accompanied by some aldehyde reduction (see Table 5, entries 4 and 5).

Attempted reductive amination of cycloheptanone with the weakly basic 2,4,6-trichloroaniline or 4-heptanone with 2,4-dibromoaniline resulted in no reaction even after 24 h, and ketones such as acetone and 3-pentanone could not be reductively aminated with the very weakly basic [60]fulleropyrrolidines. All these amines showed some reactivities in reductive amination with aldehydes (see Table 11). As stated before, benzaldehyde failed to react with 2,4dinitroaniline. While iminostilbene reacted readily with aldehydes (Table 11, entry 18), the dihydro derivative, iminodibenzyl, showed no reactivity under the same conditions with aldehydes (Table 15, entry 11). Although, we mentioned earlier that some ketones were reductively aminated with phenylhydrazine (Table 14, entry 13), this was not the case with benzaldehyde, which gave a stable hydrazone that was not reduced (Table 15, entry 13). The same results were obtained from hydroxylamine with ketones (Table 15, entry 14). Also we presented examples of reductive amination of sulfonamides with aldehydes (Table 11, entries 22 and 23), but no similar reaction with carboxamides was observed (Table 15, entry 15).

## Conclusion

Sodium triacetoxyborohydride is a mild, very effective, and synthetically useful reducing agent for the reductive amination of aldehydes and ketones. The examples presented here undoubtedly illustrate the reagent's wide scope, the diverse and numerous applications, and the high tolerance for many functional groups. It also shows fewer limitations than other reagents. In addition, the convenience of use, the ease of workup, and the simplicity of product isolation make it an attractive choice for reductive amination reactions.

Received for review May 15, 2006. OP0601013